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Abstract
In this paper, we present AnCast, an intuitive and efficient tool for evaluating graph-based meaning representations
(MR). AnCast implements evaluation metrics that are well understood in the NLP community, and they include
concept F1, unlabeled relation F1, labeled relation F1, and weighted relation F1. The efficiency of the tool comes
from a novel anchor broadcast alignment algorithm that is not subject to the trappings of local maxima. We show
through experimental results that the AnCast score is highly correlated with the widely used Smatch score, but its
computation takes only about 40% the time.
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1. Introduction
With the rapid advance of large language mod-
els as the background, there have been signifi-
cant recent research activities on the building of
graph-based meaning representation (MR) data
sets (Knight et al., 2021; Van Gysel et al., 2021;
Tu et al., 2024) and training meaning representa-
tion parsers to acquire such representations au-
tomatically (Bevilacqua et al., 2021; Bai et al.,
2022; Chen et al., 2022). One particular mean-
ing representation formalism that has received sig-
nificant attention is Abstract Meaning Representa-
tion (AMR) (Banarescu et al., 2013), a sentence-
level formalism designed for English that mathe-
matically take the form of a rooted directed acyclic
graph with nodes being concepts and edges rep-
resenting relations between concepts. AMR has
also been extended to cross-linguistic settings to
create Uniform Meaning Representation (UMR)
(Van Gysel et al., 2021), which additionally has a
document-level representation that includes coref-
erence, temporal, and modal relations that go be-
yond sentence-boundaries.

Linguistically, an AMR concept can be concrete
or abstract. A concrete AMR concept can be ei-
ther a lemma or a sense-disambiguated lemma
that consists of the lemma and its sense ID. An
abstract concept does not correspond to a specific
word token in the sentence and is either inferred
from the context or indicates a named entity type.
An AMR relation either indicates a semantic role
that an argument concept plays with respect to a
predicate concept, or other types of semantic rela-
tions between parent and child concepts. An ex-
ample with abstract and concrete concepts is pro-
vided in Figure 1.

To make advances in both building MR data sets
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Figure 1: An example AMR representation for the sen-
tence “They built a bridge in Maryland in December.”

and training MR parsers, it is important to have
appropriate MR evaluation metrics. When build-
ing meaning representation data sets, it is criti-
cal to have an evaluation metric to measure the
inter-annotator agreement (IAA) between annota-
tors to ensure data consistency. When training MR
parsers, an evaluation metric is needed to mea-
sure the performance of the parser by comparing
its output against the human annotated gold stan-
dard.

A number of meaning representation evaluation
metrics have been developed in the recent years,
with the most widely used one being variants of
Smatch (Cai and Knight, 2013; Opitz, 2023; Da-
monte et al., 2017). Smatch decomposes an AMR
graph into a set of triples, either in the form of a
⟨var rel concept⟩ or ⟨var rel var⟩. The former are
concept triples in which var is a variable, the rela-
tion rel is always “instance”, and concept is an AMR
concept. In other words, this triple indicates that
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the variable represents an instance of a particular
concept. The latter are relation triples that repre-
sent the relation between two variables, with each
representing an instance of some concept. The
Smatch score represents the fraction of triples that
overlap between two AMR graphs.

As concept and relation triples are represented
independently of one another, a relation triple
match does not require that the pair of concepts
between which the relation holds also match. This
means that even if the concepts of two AMRs
graphs are totally different, as long as a variable
mapping exists between them, Smatch will assign
non-zero scores to them, as illustrated in (2):

(2) He likes apples. She hates oranges.

(l / like (h / hate
:ARG0 (j / he) :ARG0 (m / she)
:ARG1 (a / apple)) :ARG1 (o / orange))

This runs counter to our intuition that a match
in relation is premised on the requirement that the
concepts should also match, as has been standard
in the evaluation of dependency trees, which are
special cases of graphs. In dependency-based
parsing evaluation, it is standard to use labeled
and unlabeled attachment as evaluation metrics
(Nivre et al., 2020; Lo and Wu, 2011; Papineni
et al., 2001). When calculating unlabeled attach-
ment, both the parent and child are required to
match. When calculating labeled attachment, the
relation has to match as well, in addition to the
match for parent and child. Translating the un-
labeled and labeled attachment to graph-based
meaning evaluation means that we will assign dif-
ferent scores to the three AMR graphs for the sen-
tence in (3).

(3) He likes her.

(l / like (l / like
:ARG0 (h / he) :ARG0 (s / she)
:ARG1 (s / she)) :ARG1 (h / he))

(h / he
:ARG0 (l / likes)
:ARG1 (s / she))

AMR graphs differ from dependency trees in that
there is no guarantee that the concepts from two
graphs for the same sentence will be the same.
This means that we need an additional metric for
concept triples. By decomposing the meaning rep-
resentation metric into three different scores, con-
cept F1, unlabeled relation F1, and labeled relation
F1, we will have a metric that is easily interpretable
and familiar to users in the NLP community.

Unlike dependency trees, there is no inherent
alignment between the nodes in an AMR graph
and the word tokens for a sentence, as some word

tokens may not align with any concepts in the AMR
graph, while some AMR concepts (e.g., abstract
concepts) in the graph may not map to any word
tokens. So when evaluating the similarity of two
AMR graphs for the sentence, the first step is to ob-
tain an alignment between them. Smatch obtains
this alignment by maximizing the F1 of the con-
cept and relation triples between the two graphs
by initializing a random alignment between them
and then iteratively revising the alignment by maxi-
mizing the Smatch score through hill climbing. The
hill-climbing approach to alignment can en at local
optima and is also inefficient.

In this paper, we report AnCast1, a Meaning
Representation (MR) graph evaluation metric that
implements an efficient alignment algorithm based
on the idea that we can align two graphs by identify-
ing initial alignment anchors in a pair of graphs. Ini-
tial anchors are pairs of concepts, one from each
graph, that can be aligned with a high level of confi-
dence either because the two concepts match and
they are also unique within each graph, or if they
are aligned to the same word token(s) in a sen-
tence. We can determine the alignment for the rest
of the concepts in the pair of graphs by observing
that concepts with aligned anchors as neighbors
also have a higher probability of being aligned. We
can thus align two graphs by first identifying initial
anchors and then iteratively propagating the align-
ment to their neighbors through a process called
anchor broadcast.

The rest of the papers is organized as follows.
In Section 2, we provide a detailed description of
our alignment method and the evaluation metrics.
We present experimental results in Section 3 to
show that when evaluating AMR parsers, AnCast
produces results that are highly correlated with
Smatch scores but in a more efficient manner and
does not get trapped in local maxima. We discuss
related work in Section 4 and draw our conclusions
in Section 5.

2. Method
The basic goal of an evaluation metric for MR
graphs is to quantify the similarity between two
graphs. We believe that a good evaluation metric
for MR graphs needs to be interpretable, efficient,
and light-weight. As we cannot assume that the
concepts between the two graphs are aligned, the
first step when designing an MR metric is to per-
form concept alignment between pairs of graphs.

AnCast performs alignment through an iterative
process by first computing an intrinsic similarity
matrix between two graphs based on the intrinsic
properties of the nodes and an initial anchor ma-
trix based on concept pairs that can be aligned
with high confidence. This initial anchor matrix will

1https://github.com/sxndqc/ancast
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be iterative updated through anchor broadcast un-
til no more concepts can be aligned. Finally, sub-
optimal alignment is performed on the remaining
unmatched concepts.

The output of the alignment process is a list of
aligned concepts between the two graphs. Using
the list of aligned of concepts, we compute concept
F1, unlabeled relation F1, labeled relation F1, and
weighted relation F1. We also compute a mock
Smatch score to evaluate the correlation between
the AnCast score and the Smatch score.

2.1. Intrinsic Similarity and Initial
Anchor Matrices

The intrinsic similarity matrix and initial anchor ma-
trix are computed solely based on the intrinsic
properties of a node. The intrinsic properties of a
node include the lemma, the sense of the lemma,
and the attributes of a concept. Comparing the
intrinsic properties of the nodes between two MR
graphs results in an intrinsic similarity matrix S, a
|V (T )| × |V (G)| matrix, where V (T ) denotes the set
of all nodes (vertices) of the test graph, and V (G)

denotes nodes of the gold graph.
The similarity Sij between a specific pair of

nodes (V
(T )
i , V

(G)
j ) is computed as

Sij =
S
(l)
ij (1 + γ(S

(s)
ij − 1)) + S

(a)
ij

1 + 1(|R(i,j)|)
(1)

where S
(l)
ij is the string similarity of the concept

lemmas of V (T )
i and V

(G)
j , S(s)

ij represents whether
the senses of two nodes match and S

(a)
ij repre-

sents the average attribute similarity between two
nodes. γ is the sense coefficient used to deter-
mine the level of importance of sense matching to
the intrinsic similarity, set empirically at 0.1.

S
(l)
ij measures the similarity between the

lemmas of the two nodes and is equal to
sim(LEMMA(V

(T )
i ),LEMMA(V

(G)
j )), where the

similarity function sim is defined in Equation 2:

sim(us, ul) =

{
|us|/|ul|, us ⊆ ul

0, otherwise
(2)

If the two strings have an inclusion relationship,
the similarity is the ratio of the shorter string us to
the longer string ul; if they are equal, it is 1. In any
other case, the similarity is 0.

S
(s)
ij represents whether the sense of two nodes

matches, and is equal to 1(SENSE(V
(T )
i ) =

SENSE(V
(G)
j )), which evaluates 1 when they are

same, and 0 otherwise.
S
(a)
ij measures the average attribute similarity

between two nodes, and is calculated using Equa-

tion 3:

S
(a)
ij =

∑
r

1(D
(i,j)
T (r) = D

(i,j)
G (r))

|R(i,j)|
(3)

where D
(i,j)
T and D

(i,j)
G are attribute value dic-

tionaries for V
(T )
i and V

(G)
j , and R(i,j) represents

the subset of attributes in both dictionaries, as
specified in Equation 4. We stipulate that when
|R(i,j)| = 0, S(a)

ij = 0.

R(i,j) = {r|r ∈ D
(i,j)
T (keys) ∩D

(i,j)
G (keys)} (4)

(4) illustrates the result of the intrinsic similarity
calculation for a toy example. S

(l)
ij is 0.375, S

(s)
ij

is 0, S(a)
ij is 0.5 because they have two shared at-

tributes, but only one attribute has identical values.
The final intrinsic similarity Sij for this pair of AMR
nodes is 0.41875.

(4) (f / fry-03 (s / stir-fry-01
:quant 5 :quant 7
:polarity - :polarity -)
:mode imperative)

Initial Anchor Matrix Initial anchor pairs refer to
pairs of concepts from two graphs that are aligned
by the algorithm based solely on the lemma of the
concepts. There are two methods to find such an-
chor pairs. If manual alignment between an MR
graph and the word tokens in a sentence exist, the
alignment between a pair of concepts can be in-
ferred from this alignment by noting that a pair of
concepts aligned to the same word tokens can be
considered to be an initial anchor pair.

If an MR graph are not manually aligned to word
tokens in a sentence, which is the case for the
AMR annotation, the alternative is to extract a sub-
set of highly similar pairs from a pair of graphs
for the same sentence. For instance, if a pair of
nodes (i) represent a concrete concept, (ii) have
the same lemma, and (iii) are unique in their re-
spective graphs, we can safely assume that they
form an initial anchor pair. Note that the sense
does not have to be the same as it does not af-
fect the uniqueness of a concept. In other words,
if the sense IDs of a concept pair are not the same,
they can still be initial anchors. The pairs of initial
anchors that have such properties will be assigned
1 in the initial anchor matrix A(0,0), and the rest of
the concept pairs are assigned 0.

The initial anchor matrix will be updated in the
iterative anchor broadcast step, while the intrinsic
similarity matrix will only be computed once and
will not be updated once it is computed.

2.2. Iterative Anchor Broadcast
Anchor broadcast is an O(n3) algorithm that it-
eratively propagates contextual information on a
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graph. This algorithm consists of an outer loop and
an inner loop, followed by a finalization phase. The
inner loop broadcasts an anchor matrix by combin-
ing an adjacency matrix that encodes the shared
contextual information of a pair of nodes and the in-
trinsic similarity matrix and returns a list of aligned
concept pairs and an updated anchor matrix. The
outer loop iteratively expands the list of aligned
concepts through multiple iterations of the inner
loop, and assigns a matching quality level to the
concept alignment based on the order in which
the aligned concepts are identified. The finaliza-
tion phase conducts suboptimal matching for the
remaining nodes and identifies unalignable nodes.

2.2.1. The Inner loop

Computing structural similarity of a node pair
The inner loop is a revised SimRank algorithm (Jeh
and Widom, 2002) for bipartite semantic graphs.
Here, we use this algorithm to capture the intu-
ition that a pair of nodes has a higher similarity if
they have more anchor pairs in their neighborhood.
We consider 1-hop and 2-hop neighbors of the ith

node of the test graph V (T ) and the jth node of the
gold graph V (G), namely parent and grandparent
nodes (ancestors) and child and grandchild nodes
(descendants), denoted as NP and NC respec-
tively. Edge labels between a parent and a child
are not taken into consideration when identifying
neighbors. We include indirect neighbors at dis-
tances of more than one because there are cases
where the nodes are still similar even though their
immediate neighbors are not due to errors in anno-
tation or parsing. Based on the neighborhood sim-
ilarity, we compute an adjacency matrix in which
each cell represents the similarity between a pairs
of nodes based on the similarity of their neighbor-
hood.

When computing the neighborhood similarity for
a pair of nodes, we consider ancestors separately
from descendants. We compute two matrices, P

for ancestors and C for descendants, where the
similarity between a pair of nodes is calculated as
the sum of the anchor values of all ancestor (de-
scendant) node pairs as in Equations 5-7, where
A(q,t) means the anchor matrix in the process of be-
ing propagated at the tth iteration of the inner loop
and the qth iterationn of the outer loop. ∆Nij rep-
resents the ratio of the number of neighbors (par-
ent side or child side) between nodes V

(T )
i and

V
(G)
j (greater than or equal to 1) as a coefficient

for correcting false high similarities caused by mis-
matched numbers of neighbors. For example, if
one node has 1 neighbor and the other has 5 neigh-
bors, they should at most have 1 matching neigh-
bor. However, if both nodes have 3 neighbors,
then this correction coefficient is not needed. The
parent, child, and adjacency matricies are com-

puted as follows:

P
(t+1)
ij =

1

∆NPij

NP (V
(T )
i )∑

kt

NP (V
(G)
j )∑

kg

A
(q,t)
ktkg

(5)

C
(t+1)
ij =

1

∆NCij

NC(V
(T )
i )∑

kt

NC(V
(G)
j )∑

kg

A
(q,t)
ktkg

(6)

A
(q,t+1)
ij =

√
(P

(t+1)
ij + 1)(C

(t+1)
ij + 1)− 1 (7)

In Equation 5, kg and kt are the indices of nodes
extracted from neighborhoods. The parent and
child sides of the neighbor information are aggre-
gated as the square root of the product, because
the number of neighboring anchors makes a signif-
icant difference between 0 (no anchor in neighbor-
hood) and 1 (one anchor pair in the neighborhood),
but its significance decays with additional neigh-
bors. The significance of having anchors on both
sides is also very different from having anchors on
only one side, so we use square root function to
flatten the curve when the number of anchors is
relatively large, but steepen the slope when it is
within the range of 0-1. The broadcasted anchor
is then regularized as in Equation 8. ||A(q,t+1)||∞
is the maximum of the matrix, which is also the in-
finity norm. Finally, all the anchor points in A(q,t+1)

are reset to 1 to reinforce the initial anchor infor-
mation as in Equation 9, where A(q,0) is an anchor
matrix with values in 0, 1 and the initial anchors for
the qth round in the outer loop.

Ā(q,t+1) =
A(q,t+1)

||A(q,t+1)||∞
(8)

Ā
(q,t+1)
ij = 1 if A

(q,0)
ij = 1 (9)

The equations 5-7 can be computed in the form
of matrix operations, where J is all-ones matrix,
∆NP and ∆NC are matrix neighbor number ratios,
and Y , Z are respectively the combination of first
and second order adjacency matrices on the par-
ent side and the child side.

P (t+1) =
1

∆NP
Y T
(test)A

(q,t)Y(gold) (10)

C(t+1) =
1

∆NC
ZT
(test)A

(q,t)Z(gold) (11)

A(q,t+1) =

√
(P (t+1) + 1)(C(t+1) + 1)− J (12)

Aggregating structural information and intrin-
sic information At the end of broadcast will there
will be a converged adjacency matrix with values
between 0 and 1 denoted as A(q,tc), as proved in
(Jeh and Widom, 2002). The convergence is de-
fined as every element of A(q,tc) being within a
range of ϵ to A(q,tc−1), where ϵ is set to 1e − 4.
This broadcasted anchor is multiplied with the in-
trinsic similarity to obtain an adjusted similarity ma-
trix F (q) as in Equation 13.
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F
(q)
ij = (Sij + α)(Ā

(q,tc)
ij + β) (13)

The adjusted similarity matrix can then be used
to update the anchor matrix. Two biases are intro-
duced in Equation 13. The bias α is used to allow
the matching between some pairs of nodes that
have different abstract concepts but are in a simi-
lar structural configuration, indicating that the two
abstract concepts might be semantically related. β
is an adjustment factor for nodes that are far from
anchors. If a node is far from an anchored node, it
may not receive much propagated structural infor-
mation and its structural similarity may still be near
0. As this is a very rare situation, β is very small
compared to α. We define α to be 0.2 and β to
be 0.01 in our metric. To avoid round-off errors of
floats, the values in adjusted similarity matrix are
rounded to the same precision of the convergence
precision t, which is set to 1e-4 in our setting.

2.2.2. The Outer loop
The updated anchor matrix A(q+1,0) is generated
by setting A

(q+1,0)
ij to 1 where F

(q)
ij is the maximal

value of both its rows and columns, which means
the two nodes are mutually their best match under
the combination of intrinsic and neighborhood in-
formation. If a node in graph A has multiple nodes
in graph B bearing the same maximum similarity
value, then these nodes in B with the same simi-
larity will be, as the final step, compared by adding
the similarity of edge labels from the nodes that are
connected to them, denoted by F̃

(q)
ij . If there is a

single maximum among these rival nodes, the one
with the maximum value will be chosen as the best
match; if there are more than one maximum, then
that node and those nodes in the opposing graph
corresponding to these maximum values will be
compared based on the label sets of the relations
around them. If the sets of relation labels are also
the same (which is a rare scenario but may occur),
then these nodes will not be matched in the current
round and will be compared in the next round till
more of their neighbors have been matched. Such
approach ensures that nodes will not be missed
or misaligned, as any node can only be defined
by four properties: name, attribute set, neighbors,
and the set of labels on edges connected to it. Two
nodes are necessarily identical if they have share
all these four properties.

The outer loop terminates if no such mutual best
match can be found or the new anchor matrix
would be the same as the previous anchor matrix
as all such pairs are already anchors. Note that the
intrinsic similarity matrix S is not updated and we
do not use F (q−1) from the last outer loop in place
of S, because F (q−1) already contains the results
of the last anchor broadcast. On one hand, it is
not appropriate to multiply two pieces of repetitive
structural information. On the other hand, given

the limited propagation distance of known anchors
in a single round, some pairs of nodes that are far
from known anchors might not have their neighbor-
hood similarities accurately determined yet. Such
nodes might possess high intrinsic similarity and
should be matched, but if outdated anchor informa-
tion is used, it might interfere with the calculation
of their true similarity. Therefore, only the most re-
cent anchor broadcast information should be used
in each iteration.

A
(q+1,0)
ij =

{
1 F̃

(q)
ij > max(F̃ (q)

kj , F̃
(q)
il ), ∀k, l ̸= i, j

0 otherwise
(14)

The outer loop typically consists of 2-3 inner
loops and exits when no new anchor pair is added
in the last inner loop, as illustrated in Algorithm 9.
Each pair (V (T )

ik
, V

(G)
jk

) in the matching set M is also
marked with the round number q. q increases by
1 in each round as an indicator of quality level. A
higher value of q usually implies a lower degree
of confidence that the two nodes are similar, ei-
ther because they have different lemmas or they
have slightly different structural contexts, usually
caused by differences in reentrancy.

Algorithm 1: Anchor and Broadcast
Data: Initial anchor matrix A(0,0)

Result: List of matched pairs M
1 repeat
2 repeat
3 Broadcast anchor A(q,t) using semantic

bipartite SimRank;
4 Regularize A(q,t) and reset all previous

anchor position to 1;
5 until The Aq,t has converged;
6 Combine A(q,tc) with intrinsic similarity S and

add newly matched pairs into M and return
a new anchor A(q+1,0);

7 until The new A(q+1,0) is the same as the
previous anchor matrix A(q,0);

8 Compute suboptimal matches for remaining
nodes;

9 Link all the redundant nodes to null;

2.2.3. Finalization Phase
The finalization phase deals with nodes that can-
not find a mutual best match. Generally, such
nodes are situated in areas with significant anno-
tation inconsistencies or parsing errors. Nonethe-
less, we can still find signals in concept lemmas
or their structural context that allow us to match
them by lowering the matching criteria. As illus-
trated in Algorithm 9, based on the adjusted simi-
larity matrix from the final round F (qc), we first re-
move from the matrix all matched nodes with posi-
tive q mark because nodes are only allowed in 1-1
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matches. We can thus acquire a submatrix F̃ (qc),
from which we repeatedly retrieve the global max-
imal value F̃

(qc)
xy , and remove the newly matched

nodes (V
(T )
x , V

(G)
y ), until all the rows or columns

are removed. If there are still multiple maximum
values in the residual matrix, the nodes at these
maximum value positions will be compared with re-
spect to the similarities of the sets of relation labels
connected to them, and the pair with the most over-
lapping relation labels will be selected as the best
match. If there is still a tie, then the matching pair
will be selected among these maximums of over-
lapped relation labels by the numbering order in
the matrix.

The final step of the finalization phase sets un-
matched nodes to null. Only one graph will have
such nodes as all the nodes of the smaller graph
will be matched in previous step.

Algorithm 2: Suboptimal Greedy Match
1 Let M be the set of already matched pairs in the

outer loop;
2 for (i, j) ∈M do
3 Remove row i and column j from F (qc) ;
4 F̃ (qc) is the reduced matrix from F (qc) ;
5 while rows and columns remain in F̃ (qc) do
6 (x, y)← argmax(F̃ (qc)) ;
7 Remove row x and column y from F̃ (qc) ;
8 for remaining row / column index z of F̃ (qc) do
9 z ← null

An example of broadcast process of (5) is illus-
trated as in Figure 2
(5) She is reading my book in the house.

(r1 / read-01 (r1 / read-03
:location (h2 / house) :location (h2 / home)
:ARG0 (h / he) :ARG0 (s / she)
:ARG1 (b / book) :ARG1 (p / paper)

:poss (i / i)) :part (i / i))

2.3. Metrics
With a list of aligned concepts produced by the an-
chor broadcast algorithm, we can now calculate a
number of MR evaluation metrics, measuring how
two MR graphs are similar from different perspec-
tives. We first provide a mock Smatch score to
simulate the calculation of Smatch, a metric that
measures the similarity of concepts and relations
independently, as we have discussed in Section 1.
We argue that the Smatch score does not provide
the most intuitive results, but we want to provide
this metric to evaluate how well the anchor broad-
cast algorithm correlates with the hill climbing algo-
rithm implemented in Smatch.

In addition, we propose a number of metrics that
should be fairly intuitive to the NLP community.

The first one is Concept F1, which is a score that
measures how well the two MR graphs overlap in
terms of their nodes. The second one is Labeled
Relation F1, which measures the degree to which
relation triples from the two graphs match. The
Labeled Relation F1 assumes that the concepts
from the triple as well as their parent-child depen-
dency would have to match as well, in addition to
the relation (the edge label) itself, and it is thus a
more rigorous metric than Smatch. We also cal-
culate Unlabeled Relation F1, which is calculated
similarly to Labeled Relation F1 but does not re-
quire that the edge label itself match. Finally, we
provide a Weighted Relation F1, which attempts to
capture the intuition that the matches for some re-
lations are more important than others. Below we
explain how each of these metrics are applied in
detail.

2.3.1. Mock SMatch Score
The essence of the SMatch metric is that it eval-
uates concepts and relations independently of
each other. It consists of four parts: (i) root
match, whether the roots of the two graphs are
a match, denoted as ⟨TOP TOP var⟩; (ii) in-
stance match, whether the matched variables cor-
respond to the exact same lemma and sense,
and there is no match, for example, between
⟨r instance read−03⟩ and ⟨r instance read−01⟩; (iii)
relation match, where ⟨var rel var⟩ are compared
as a whole, requiring the relation labels to be com-
pletely the same and the two pairs of variables,
one for the parents and one for the children, to be
both matched as well; (iv) attribute match, which
requires an exact match for attributes such as
⟨a7, quant, 2.5⟩. Since we also have list of aligned
nodes, we can simulate the calculation of the
SMatch score. We will show in our experiments
that our mock Smatch score has an extremely high
correlation with the actual Smatch score, with a
Pearson correlation of over 0.97.

2.3.2. Our metrics
Concept F1 Concept F1 measures the degree to
which the two graphs have similar concepts. We
first approach this from the perspective of one
graph, examining the intrinsic similarity of every
node in the graph to its matched counterpart. If
there is no match, the similarity S(v,M(v)) is 0 if
v /∈ V , with M being the list of aligned concepts.
This is calculated for both the test and the gold
graphs, and the F score is derived from the two
Γ′s, to deal with the situation where the test and
gold graphs are different in size.

Γ′ =
1

|V |

V∑
v

S(v,M(v)) (15)

Γ = F-score(Γ′
T ,Γ

′
G) (16)
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Figure 2: The anchor, broad-
casted anchor and adjusted simi-
larity matrix for (5). The initial an-
chor only contains read − read,
as i is not the same form as my
in the text. In the first round
of outer loop, the newly estab-
lished anchor are paper − book,
i−i and he−she, but the home−
house relation is not established
as their best choices are not
each other. Neither can the sec-
ond round link home − house
because they are still not each
other’s best match, so they are
suboptimally matched after re-
moving all current anchor pairs.

Labeled Relation F1 This is an overall score that
measures the similarity for both concepts and re-
lations, defined as the F score of average relation
overlap. We do not add an extra node “TOP” be-
cause the root node does not affect the semantics
of an AMR graph.

Consider a parent-child tuple v1 and v2 on an MR
graph. If both v1 and v2 have aligned concepts in
the graph it is measured against, we will have a mir-
ror parent-child tuple (w1, w2) from the other graph.
First we calculate how similar these two tuples are
by calculating sc in Equation 17, which is the aver-
age of intrinsic similarity of the two tuples. If there
is no such mirror tuple, sc is 0. The tuple repre-
sents a parent-child dependency and is thus direc-
tional, so relation tuples like ⟨read− 03 ARG0 book⟩
and ⟨book ARG0 read − 03⟩ are considered to be
totally different.

sc = (Sv1w1 + Sv2w2)/2 (17)

In an MR representation, there may be one or
more relations between this parent-child pair p,
whose relation labels compose a set denoted as
Lp. Let sol denote how many labels in Lp that
are also in (w1, w2), their counterpart’s label set
L′. Intuitively we should assign a higher weight to
parent-child pairs with multiple relations. We thus
multiply sc by the size of the set of overlapping re-
lations sol to calculate the relation F1 sp for this
parent-child pair (v1, v2).

sol =
∑
r∈Lp

1(r ∈ L′
p) (18)

sp = scsol (19)

The total labeled relation F1 Ψ is computed as
in Equation 20-22, where P is the set of all parent-
child concept pairs in one graph, p denotes one
particular parent-child pair and T is the set of all
triples, as the weight of a parent-child pair with mul-
tiple triples is already encoded in its sp. and an

F-score of the two Ψ′ is calculated as well.

|T | =
P∑
p

|Lp| (20)

Ψ′ =
1

|T |

P∑
p

sp (21)

Ψ = F-score(Ψ′
test,Ψ

′
gold) (22)

Unlabeled Relation F1 Sometimes we only need
to check the structural similarity between two
graphs without being concerned with specific re-
lation labels. We thus set all sol to their maximal
possible value min(|Lp|, |L′

p|, and the unlabeled re-
lation F1 for one parent-child pair is calculated as
in Equation 23, with the rest of the metric calcu-
lated the same way as its labeled counterpart by
substituting sp with sup .

sup = sc ·min(|Lp|, |L′
p|) (23)

Weighted Relation F1 It is debated whether there
is “core semantics” in our perception of MR graphs
(?Cai and Lam, 2019a), which claims that nodes
closer to the root or having more children are se-
mantically more important than those that are fur-
ther away from the root or have fewer children. We
provide this metric for further study. The weight
of each parent-child pair wp is determined by the
two numbers of parent and child’s descendants,
namely their arguments, grand-arguments and so
on, respectively d1 and d2, with attribute nodes hav-
ing no descendants, and we have:

wp =
√

d1d2 + 1 (24)

This gives higher weight to relations that are
higher in the concept hierarchy in the MR graph,
and guarantees that every relation at least has a
weight of 1. Subsequently, we have:
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swp = wpsp (25)

Ψ′
W =

∑P
p swp∑P

p wp|Lp|
(26)

3. Experiment and Discussion
We selected five well-maintained parsers with
available checkpoints trained on the AMR 3.0
dataset from the top 13 parsers on LDC2020T02
benchmark. IBM transition-based parser(Drozdov
et al., 2022) parser is evaluated with AMR3-
structbart-L checkpoint; BiBL (Cheng et al., 2022)
is evaluated with the AMR3.0 model on its github
page; ATP-AMR (Chen et al., 2022)’s model
is ATP_SRL_AMR3.0_Ensemble; for AMRBART
(Bai et al., 2022) we use the output for AMRBART-
large (AMR3.0), and for SPRING (Bevilacqua
et al., 2021) we use its AMR3.parsing-1.0 model.

Table 1 shows the results. The Smatch score
is inflated compared to Labeled Relation F1 as it
also includes the concept F1 score and it does
not consider concept match in comparing relation
triples. Unlabeled Relation F1 can be about 5%
higher than LR F1, which indicates that it’s not rare
that concepts are correctly attached but labels are
wrong. Weighted Relation F1’s are generally lower
than LR Macro F1, meaning that the errors may
happen equally to all levels of nodes. In terms of
speed, our running time is only about 40% the that
of Smatch but yields the same result. SemBleu
(Song and Gildea, 2019) is significantly faster, but
it sacrifices interpretability and fails to parse the re-
sult from ATP-AMR and SPRING because it can-
not accept late specification where the variable is
declared first and specified afterwards, where it is
marked with “X” in Table 1.

We are interested in answering two main ques-
tions with the experiments. First, can our metrics
replace Smatch by having a high correlation with
the Smatch score? Second, can our new metric
overcome the shortcomings of Smatch by uncov-
ering more meaningful discrepancies between MR
graphs?

Similarities with Smatch score Regarding the
first question, for each of the five parsers, our
mock Smatch has a very high Pearson correla-
tion of over 0.97 with the Smatch score among the
1898 AMRs in the AMR3.0 test set, indicating that
our evaluation method yields a score that is equiv-
alent to Smatch but with higher efficiency.

Difference with Smatch score The second ques-
tion leads us to examine the change in ranking be-
tween BiBL and SPRING based on our own met-
rics. An interesting observation in parsing the 37th

sentence from AMR3.0-Lorelei test set is that the
Smatch score for BiBL’s parsing result is higher
than our Mock Smatch score (0.71 v. 0.64), but

Figure 3: Parsing results of BiBL and SPRING, and the
standard gold graph.

ours is higher than Smatch in spring’s parsing re-
sult (0.65 v. 0.63). The two parsing results and the
gold graph are shown in Figure 3.

The discrepancy stems from different ap-
proaches to variable alignment. Both parsers yield
poor results, and our metric prioritizes the match-
ing concepts with the same lemma, while Smatch
tries to get the highest possible f-score. In this
case, the two parsing results are different in only
one alignment.

In BiBL, Ancast aligns the concept “boyfriend”
to the concept with the same lemma in another
graph, while Smatch aligns “boyfriend” in the test
graph to “person” in the gold graph, which has a
more similar structural environment. This makes
BiBL’s Smatch score higher than Mock Smatch.

For spring, the only difference is the matching
of a hallucinated “cause-01” in the test graph. Our
metric aligns it with “and” in the gold graph prob-
ably because they share a common descendant
in “prepare”. Smatch aligns this hallucinated con-
cept to “resemble” which is unmatched in our met-
ric, leaving the concepts of “and” unmatched. This
shows that Smatch is stuck in a local optima here
and failed to acquire the maximum F-1 score with
4 random starts.

This case study proves that even though AnCast
never prioritizes a maximum relational F1 score, it
can sometimes do so as a side effect of our align-
ment algorithm.

Using Multiple F1’s Label Relation F1 is about
10% lower than Smatch score, and it ranks the
five parsers identically to Smatch as macro F1.
In AMR 3.0 dataset, the Macro F1 is computed
by averaging the scores of 1898 sentences, and
Micro F1 is calculated by averaging all triple-pair
scores across the whole dataset. Shorter sen-
tences thus have higher weights in Macro F1.
From the experiment results, we can see that BiBL
and Transition-based parsers might perform worse
in parsing shorter sentences than the other three.
ATP-AMR has a slightly better concept score than
AMRBART, but these concepts are worsely con-
nected as it has lower unlabeled relation F1.
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(%) Transition BiBL AMRBART ATP-AMR SPRING
Smatch (4 random starts) 81.15 83.83 86.17 85.80 84.55

Mock Smatch 79.59 82.63 85.01 84.57 83.23
Pearson Correlation 97.34 98.36 98.21 97.93 98.07

Sembleu 64.66 71.00 72.43 X X
Labeled Relation Micro F1 70.14 76.61 76.16 75.99 74.76
Labeled Relation Macro F1 70.00 75.28 79.02 78.50 76.39

Concept F1 90.29 90.13 92.67 92.83 91.54
Unlabeled Relation F1 74.83 78.51 82.27 81.73 79.57
Weighted Relation F1 70.10 73.85 77.59 76.91 74.69
Runtime of Smatch 36.56s 33.97s 33.41s 37.32s 31.95s
Runtime of Sembleu 0.08s 0.08s 0.08s X X

Runtime of A & B 14.33s 15.79s 15.63s 15.68s 15.63s

Table 1: Comparison of different methods on 1898 AMRs in AMR 3.0 dataset. All non-micro F1’s are macro F1,
including Smatch, Mock Smatch and Sembleu. Sembleu is incapable of parsing graphs with early re-entrancies.

Robustness Test Bamboo is a benchmark pro-
posed in (Opitz et al., 2021) to evaluate the ro-
bustness of AMR parsing metrics. This bench-
mark can be used to assess the degree to which
the scores given by an AMR evaluation metric be-
tween a pair of AMRs correlate with human judg-
ment, and whether the metric is robust to meaning
preserving and meaning altering transformations
of AMRs.

As shown in Table 2, our metric achieved an ex-
tremely high correction with human judgment on
the role label confusion task. This is because in
this task the role labels on the AMR graphs have
been altered and pairs of AMR graphs that are sim-
ilar are no longer similar after the transformation.
Such label alternations barely affect our concept
matching approach to alignment, but other metrics
are more affected by such changes as changes in
role labels lead to changes in alignment.

Main Reify
Metric STS SICK PARA STS SICK PARA amean
Smatch 58.45 59.72 41.25 57.98 61.81 39.66 51.28
SemBleu(k=2) 60.62 59.86 36.88 57.68 59.64 36.24 48.87
WWLKΘ 66.94 67.64 37.91 64.34 65.49 39.23 54.90
Ancast 56.46 57.17 36.09 55.31 58.67 36.09 59.95

SynoS Args
Metric STS SICK PARA STS SICK PARA hmean
Smatch 56.14 57.39 39.58 48.05 70.53 24.75 47.50
SemBleu(k=2) 57.34 56.18 33.26 44.54 67.54 16.60 42.13
WWLKΘ 60.11 62.29 35.15 55.03 75.06 29.64 50.26
Ancast 53.65 54.70 33.52 91.14 98.32 88.22 53.34

Table 2: Robustness tests on the Bamboo benchmark.

4. Related Work
Previous works on semantic graph evaluation can
be divided into alignment and alignment-free algo-
rithms. The former group, which includes Smatch
(Cai and Knight, 2013) and Smatch++ (Opitz,
2023), and provides interpretable metrics. The
latter group, which includes SemBleu (Song and
Gildea, 2019), WWLK(Opitz et al., 2021), are usu-
ally faster, but they lack in interpretability.

Smatch is a simple and light-weight evaluation
metric that measures how many of the relation and
concept triples overlap under a fast enough vari-
able alignment algorithm. However, it does not
separate the evaluation of concepts from that of

relations, making it hard to perform detailed dis-
crepancy analysis. In addition, its variable align-
ment method uses hill climbing to approximate the
non-polynomial time graph matching, sometimes
resulting in non-optimal alignment. Later work like
(Damonte et al., 2017) proposed pre-processing
techniques such as removing wikification or rela-
tion labels before using Smatch for a more com-
prehensive evaluation, but its speed is still slow.
Smatch++ trieds to optimize Smatch by reducing
the search space via identifying points that can be
aligned with high confidence and applying an ILP
solver but cannot guarantee its run-time efficiency.
SEMA (Anchiêta et al., 2019) tries to use concept
names but the comparison algorithm is too simple
and may miss many potential matches.

SemBleu (Song and Gildea, 2019) foregoes
variable alignment and instead approximates MR
graph evaluation by transforming and concatenat-
ing relations into bigrams and trigrams, to com-
putes the Bleu Score on the resulting N-graphs.
While this method is indeed fast, it lacks granu-
larity and interpretability. WWLK(WWLK-Θ) (Opitz
et al., 2021) also uses neighbor information by
adding word embeddings of directly neighboring
nodes to that of the node under evaluation. It relies
on word vectors that are unavailable when evalu-
ating low-resource language annotations, and the
parameter learning for relation labels is potentially
biased by the selection of human annotators.

5. Conclusion
We present AnCast, a meaning representation
evaluation tool that implements intuitive metrics
that include concept F1, unlabeled and labeled re-
lation F1, as well as weighted relation F1. An-
Cast is also efficient in that it implements an an-
chor broadcast algorithm that has a polynomial
runtime. This represents a significant improve-
ment over Smatch, the most widely used MR met-
ric. The alignment algorithm also has the nice
property of not being subject to the trappings of
local maxima in its search for optimal alignment.
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Limitations
The proposed anchor and broadcast algorithm is
applicable to semantic graphs that have at least
some nodes that can serve as anchors and these
are nodes that can be matched with high confi-
dence. The algorithm will not work on semantic
graphs that do not have reliable anchors as a start-
ing point. The proposed evaluation metrics are for
sentence-level semantic graphs such as Abstract
Meaning Representation or the sentence-level Uni-
form Meaning Representation, but they have to be
extended in order to be used to evaluate document-
level meaning representation graphs.
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