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Abstract
With the increasing availability of multimodal content on social media, consisting primarily of text and images,
multimodal named entity recognition (MNER) has gained a wide-spread attention. A fundamental challenge of MNER
lies in effectively aligning different modalities. However, the majority of current approaches rely on word-based
sequence labeling framework and align the image and text at inconsistent semantic levels (whole image-words
or regions-words). This misalignment may lead to inferior entity recognition performance. To address this issue,
we propose an effective span-based method, named SMNER, which achieves a more consistent multimodal
alignment from the perspectives of information-theoretic and cross-modal interaction, respectively. Specifically,
we first introduce a cross-modal information bottleneck module for the global-level multimodal alignment (whole
image-whole text). This module aims to encourage the semantic distribution of the image to be closer to the
semantic distribution of the text, which can enable the filtering out of visual noise. Next, we introduce a cross-modal
attention module for the local-level multimodal alignment (regions-spans), which captures the correlations between
regions in the image and spans in the text, enabling a more precise alignment of the two modalities. Extensive ex-
periments conducted on two benchmark datasets demonstrate that SMNER outperforms the state-of-the-art baselines.

Keywords: Multimodal named entity recogniton, Multimodal alignment, Multimodal fusion

1. Introduction

Named Entity Recognition (NER) involves identify-
ing named entities within a given sentence and cat-
egorizing them into the pre-defined types. (Li et al.,
2020). NER is a critical natural language process-
ing task and plays a key component in information
retrieval (Dietz, 2019), question answering (Min
et al., 2021), knowledge graph (Zhao et al., 2022),
etc. However, in practical scenarios such as social
media platforms, the text is often limited, informal,
and accompanied by images, which presents a sig-
nificant challenge for the traditional text-based NER.
Multimodal named entity recognition (MNER) has
become a new direction and attracts widespread
attention attributed to its excellent performance in
entity recognition for social media posts.

MNER extends the traditional text-based NER
by incorporating images as additional input (Zhang
et al., 2018), which can offer complementary ben-
efits to alleviate ambiguity in natural languages.
However, MNER poses a fundamental challenge of
effectively aligning information across two modali-
ties: text and image. The existing MNER methods
primarily utilize various attention networks (such as
self-attention or cross-attention) to solve this chal-
lenge, which can be categorized into two strategies:
coarse-grained alignment and fine-grained align-
ment, as shown in Figure 1.
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Figure 1: An example of coarse-grained alignment
and fine-grained alignment. Both of these two
strategies align text with image at inconsistent se-
mantic levels, leading to misalignment noises.

In the early stages, some efforts (Zhang et al.,
2018; Moon et al., 2018) directly consider the entire
image as global-level visual cues, which guides the
words in the text to learn a vision-aware represen-
tation of a whole image, as shown in Figure 1(a).
However, this coarse-grained alignment inevitably
introduces image noise (e.g., background) and si-
multaneously results in the loss of some representa-
tive information. Subsequently, increasing studies
(Zheng et al., 2020; Yu et al., 2020; Zhang et al.,
2021; Xu et al., 2022; Jia et al., 2023) started focus-
ing on fine-grained semantic alignment between
text and images. These methods typically involve
capturing the interactions between words in the
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text and regions in the image in a unified semantic
space, as shown in Figure 1(b). Actually, the re-
gions of the objects in the image should align with
the corresponding entity spans in the text rather
than the individual words, as individual words may
not adequately capture the overall semantics of an
entity span. As shown in Figure 1, for the semantic
representations of the two modalities, the regions of
the person object Adam Levine in the image should
have a higher similarity to the span “Adam Levine "
in the text than the word “Adam" or word “Levine".
Given that neither of the aforementioned alignment
strategies successfully achieves consistent seman-
tic alignment between text and images, resulting in
the introduction of noise and subsequently inferior
performance, we collectively refer to these issues
as “misalignment noise".

Taking the considerations above, we propose
an effective Span-based Multimodal Named Entity
Recognition method, named SMNER, which re-
gards MNER as a span-based classification task
rather than a word-based sequence labeling task.
SMNER is intensively designed for learning informa-
tive multimodal span representations by effectively
aligning and fusing the information contained in text
and image. SMNER consists of two key modules:
a cross-modal information bottleneck (CMIB) mod-
ule for global multimodal alignment and denoising,
and a cross-modal attention (CMA) module for local
multimodal alignment and interaction.

More specifically, motivated by the multi-view in-
formation bottleneck principle (Federici et al., 2020),
we consider the text and image as two different
views of the same posts. Firstly, we formulate the
cross-modal global semantic alignment from an
information-theoretic perspective by maximizing
the mutual information and minimizing the distri-
butional divergence between the two modalities.
This module can bring the visual semantic distribu-
tion closer to the textual semantic distribution and
filter out irrelevant information from visual repre-
sentations. Secondly, for fine-grained multimodal
alignment, we feed the contextual unimodal rep-
resentations into a cross-modal attention module
that captures the correlations between spans in
the text and regions in the image. This module
can enable a more precise alignment between two
modalities and acquire informative cross-modal fea-
tures. Finally, the obtained cross-modal features
are aggregated effectively to enhance the represen-
tation of spans, thereby improving the performance
of entity classification.

In summary, the main contributions of this paper
are as follows:

• We propose SMNER1, a span-based classi-

1The code of our model will be released for future
research.

fication method for MNER, aiming to reduce
the impact of misalignment and achieve more
consistent multimodal alignment at two levels
(image-text and regions-words, respectively).
To the best of our knowledge, we are the first
to explore the span-based MNER model for
the issue of misalignment.

• We introduce two modules (CMIB and CMA)
from the perspective of information-theoretic
principle and cross-modal interaction, respec-
tively. These modules work in synergy to gen-
erate more expressive cross-modal represen-
tations, enhancing the final entity classification
performance.

• We conduct extensive experiments on two
widely used MNER datasets to prove the effec-
tiveness of our method. Experimental results
show that SMNER outperforms the state-of-
the-art models on both datasets.

2. Related Work

In this section, we review the related works of our
method from: mulitmodal named entity recognition
and information bottleneck.

2.1. Multimodal Named Entity
Recognition

As multimodal data become increasingly popular
on social media paltforms, starting with Moon et al.
(2018); Lu et al. (2018); Zhang et al. (2018), MNER
has attracted broad concerns in named entity recog-
nition.

From the perspective of multimodal alignment
and fusion. some studies (Moon et al., 2018; Zhang
et al., 2018) tried to encode the entire image, which
implicitly interacts the information of two modalities
using attention mechanism. For example, Moon
et al. (2018) proposed to utilize LSTM-CNN archi-
tecture that combines text with image information
via a general modality attention, and Zhang et al.
(2018) proposed an adaptive co-attention network
to dynamically control the fusion of two modalities.
Different from above works of using the whole im-
age, subsequent works (Lu et al., 2018; Yu et al.,
2020; Wu et al., 2020; Zheng et al., 2020; Zhang
et al., 2021) primarily focused on combining the fine-
grained regions visual information with the words
information in text to boost the MNER performance.
Lu et al. (2018) extracted the image regions that are
most related to the text and utilized the attention-
based model to implicitly interact the information
of two modalities. Yu et al. (2020) introduced a
multimodal interaction module designed to capture
both image-aware word representation and word-
aware visual representation. Zhang et al. (2021)
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Figure 2: Model architecture overview of SMNER. The cross-modal information bottleneck module for
global multimodal alignment and denoising, and the cross-modal attention module for local multimodal
alignment and interaction.

exploited a unified multimodal graph to capture the
interactions between words in the text and regions
in the image.

Despite the studies above have achieved promis-
ing results, most of these methods ignore the prob-
lem of the visual noise caused by irrelevant images.
More recently, Xu et al. (2022), Chen et al. (2022)
and Zhang et al. (2023) alleviate this problem by
text-image matching, hierarchical visual prefix and
contrastive learning, respectively.

Different from the aforementioned methods, we
focus on the noise caused by misalignment. Ad-
ditionally, the above studies are under the word-
based sequence labeling framework, whereas we
utilize the span-based classification framework, en-
suring the alignment and interaction between text
and images at consistent semantic levels. It is
worth noting that while Zhou et al. (2022a) also
employed a span-based framework for MNER, it
takes more concerns on mulimodal representations,
overlooking the mulitmodal alignment and interac-
tion.

2.2. Information Bottleneck

Information Bottleneck (IB) (Tishby and Zaslavsky,
2015) principle provides a theoretical framework for
analyzing deep neural networks, which formulates
the goal of representation learning as an informa-
tion trade-off between predictive power and repre-
sentation compression. Later, variational informa-
tion bottleneck (VIB) (Alemi et al., 2016) bridges the
gap between IB and deep learning with variational
inference. More recently, Federici et al. (2020)
provides a variant of IB which extends the ability
of IB to the multi-view unsupervised setting, en-
abling the identification of superfluous information

that is not shared by both views. Nowadays, ow-
ing to its capacity for learning minimal informative
representations, IB has been extensively applied
in computer vision (Peng et al., 2018), sentiment
analysis (Mai et al., 2022), and natural language
processing (Zhou et al., 2022b). Motivated by this,
instead of directly applying IB principle to MNER
task, we adopt the multi-view IB principle for en-
hancing the distribution consistency between the
two modalities and filtering out irrelevant informa-
tion from the images.

3. Method

3.1. Overview
Task Definition. Given the input pair contain-
ing a text sentence T and its associated image
V , the goal of MNER is to detect entity spans
from T , and classify them to corresponding en-
tity types. Unlike the existing MNER models that
regard MNER as a sequence labeling task, we
regard MNER as a span classification task. Let
T = {w1, w2, ..., wN} denote the input sentence
with N words and the label for the text T is formu-
lated as a set Y = {(sk, ek, yk)}Ne

k=1, where Ne is
the number of the named entities. (sk, ek) is the
span of an entity that corresponds to the phrase
T(sk,ek) = {wsk , wsk+1, ..., wek} and yk represents
the corresponding entity type that belongs to a pre-
defined entity type set.

Model Architecture. The overall architecture of
the SMNER is illustrated in Figure 2. Given image-
text pairs, we first obtain the unimodal represen-
tations by the modal-specific encoder. Then, the
representations of both text and image primarily
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flow into two modules: 1) the cross-modal informa-
tion bottleneck module for global multimodal align-
ment and denoising, 2) the cross-modal attention
module for local multimodal alignment and interac-
tion. Finally, we fuse the representations of the two
modalities to obtain the multimodal span represen-
tation, and feed it into a entity classification layer to
get the final predictions. These modules are trained
simultaneously using an end-to-end framework.

3.2. Modal-specific Encoder
Given a multimodal dataset with |D| samples, is
formulated as {X ,Y}|D|

i . Each example (x, y) ∈ D
contains the multimodal post x = {xt, xv} and the
task defined label y, where xt and xv are text and
image respectively. For each post {xt, xv}, we first
utilize the pre-trained models to obtain its unimodal
representations Ht and Hv, respectively.

Text Encoder. To precisely capture both the
global and contextual representations, we adopt a
pretrained BERT-base-uncased model (Kenton and
Toutanova, 2019) as our textual encoder. Given a
text xt = {w1, w2, ..., wn} with n words, it needs to
add a [CLS] token at the beginning and a [SEP]
token at the end. We denote the text input as
x′ = (w0, w1, w2, ..., wn, wn+1), where w0 is the
[CLS] token and wn+1 is the [SEP] token. We feed
the input x′ into BERT to obtain the factual out-
put Ht = {h0,h1, ...,hn}, where hg

t = h0 ∈ R1∗d

represents the global text representation, hc
t =

{h1, ...,hn} ∈ Rn∗d is the contextual word repre-
sentations for xt, and d is the dimension of textual
representations.

Image Encoder. To extract meaningful feature
representations from images, we leverage a pre-
trained 152-layer ResNet (He et al., 2016) as
the image encoder, which essentially splits each
input image into m visual blocks. Specifically,
we fist rescale the whole image into 224*224
piexls, and then feed them into ResNet to ob-
tain visual representation V = {v0,v1, ...,vm} ∈
R(m+1)∗2048. To project the visual representations
into the same dimension as the textual represen-
tations, we further convert V with a linear trans-
formation: Hv = W T

v V , where W v ∈ R2048∗d

is the weight matrix. Finally, we obtain Hv =
{hv0,hv1, ...,hvm} ∈ R(m+1)∗d, where hg

v = hv0 ∈
R1∗d is the representation of the whole image, and
ho
v = {hv1, ...,hvm} ∈ Rm∗d is the representations

of the regional objects.

3.3. Cross-Modal Information Bottleneck
One challenge of multimodal alignment is how to
establish a unified semantic representation space

to bridge the semantic gap between two different
modalities. Additionally, we should consider that
text representations play a predominant role in
MNER task, as all the entities to be recognized
originate from text. To achieve these objectives,
we present a Cross-Modal Information Bottleneck
(CMIB) module from an information-theoretic per-
spective, aims to bring visual semantic distribution
closer to the textual semantic distribution while fil-
tering noise from the images.

Given xt and xv that are derived from the same
post, they share the same predictive task for a tar-
get y. Therefore, in this paper, we consider xt and
xv to be two views for the same object and sup-
pose the xt is sufficient for y. Motivated by the
multi-view IB (Federici et al., 2020), we can sub-
divide I(xv, zv) into two components by using the
chain of mutual information (MI):

I(xv; zv) = I(zv;xt)︸ ︷︷ ︸
consistent

+ I(xv; zv|xt)︸ ︷︷ ︸
irrelevant

(1)

where zt and zv are the representations of the en-
tire text xt and image xv, respectively. I(zv;xt)
denotes the information that is consistent between
two modalities, and I(xv; zv|xt) denotes the infor-
mation in zv which is unique to xv but is not pre-
dictable by observing xt, i.e., irrelevant information
in the image.

We would like to define an objective function
for the representation zv of xv that discards as
much information as possible without losing any
entity information. For this purpose, we should
ensure that the representation zv is sufficient for
xt (maximizing I(zv;xt)), and that the irrelevant
information is discarded (minimizing I(xv; zv|xt)).
So the loss function of the cross-modal information
bottleneck in our model is defined as:

Lcmib = −I(zv;xt) + βI(xv; zv|xt) (2)

where β represents the Lagrangian multiplier intro-
duced by the constrained optimization. With the
gradients from back-propagation, semantic regular-
ization can automatically enforce semantic agree-
ment among heterogeneous representations.

It is challenging to compute the mutual informa-
tion I(zv;xt) and I(xv; zv|xt) directly. The same
as Federici et al. (2020), we use variational in-
ference to compute a variational upper bound for
I(xv; zv|xt) as follow:

I(xv; zv|xt)

= DKL(p(z
v|xv)||p(zt|xt))

−DKL(p(z
v|xt)||p(zt|xt))

⩽ DKL(p(z
v|xv)||p(zt|xt))

(3)

Therefore, we replace it in (2) with this upper
bounder, which can be optimized via evaluating
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the Kullback-Leibler (KL) divergence between the
unimodal distributions approximated by two modal-
specific Variational AutoEncoders (VAEs). Math-
ematically, the posterior distribution p(zu|xu), u ∈
{t, v} of each unimodal representation is estimated
as follows:

p(zt|xt) = N (zt|µ(hg
t ), σ(h

g
t ))

p(zv|xv) = N (zv|µ(hg
v), σ(h

g
v))

(4)

where the mean µ and variance σ of Gaussian
distribution can be obtained from the modal-specific
multilayer perceptron (MLP) layers. Then, we use
reparameterization trick to sample zt and zv:

zt = µ(hg
t ) + σ(hg

t )× ϵ

zv = µ(hg
v) + σ(hg

v)× ϵ
(5)

where ϵ ∼ N (0, I) is a standard normal Gaussian
distribution.

Similarly, for I(zv;xt), we calculate its lower
bounder as follows:

I(zv;xt) = I(zv; zt) + I(zv;xt|zt)

⩾ I(zv; zt)
(6)

We maximize the mutual information (MI) I(zv; zt)
for modality pairs by infoNCE (Oord et al., 2018)
which is used as a lower bounder on MI. Subse-
quently, it can be optimized by :

I(zv;xt) ⩾ −Ep

fd(zt, zv)− Ep′ log
∑
zv′

fd(z
t, zv′

)


(7)

where fd(·) is a discriminator function that mea-
sures the degree of consistence between text-
image representations, (zt, zv) refers to the posi-
tive sample which sampled text-image representa-
tions from the same input pair, and (zt, zv′

) denotes
in-batch negative example.

3.4. Cross-Modal Attention
Cross-Modal Attention module can further capture
the fine-grained semantic interactions between two
modalities after semantic regularization, enabling
a more precise alignment of the two modalities.

Specifically, given the contextual unimodal rep-
resentations hc

t ∈ Rn∗d and ho
v ∈ Rm∗d, we first

obtain the representations of span (i, j) by a span
encoder, denoted as {s(i,j)|1 ⩽ i ⩽ j ⩽ n} where
s(i,j) = [hi;hj ; l(i,j);p(i,j)], l(i,j) is the span length
embedding and p(i,j) is the morph embedding for
span (i, j). We could obtain the representations for
all spans, and correspondingly acquire the contex-
tual span representations s′t ∈ Rns∗ds as follows:

s′t = (s(1,1), ..., s(i,j), ..., s(n,n)) (8)

where ns is the number of spans and ds is the
dimension of span representation. Notice that, in
this paper, the max span length is limited to 4, which
can cover almost all entities. Similarly, we further
convert s′t into st via a linear transformation matrix
W s ∈ Rds∗d, so st has the same dimension as the
visual representations.

Additional, we fuse the global and local repre-
sentation of images via concatenating, i.e., mv =
[zv;h

o
v]. Subsequently, we use the multi-head

cross-modal attention to obtain the text-aware vi-
sual representations as follows:

αi = softmax(
[W qist]

T [W kimv]√
d/h

) (9)

sit→v = αi[W vimv]
T (10)

st→v = W [s1t→v; s
2
t→v; ...; s

h
t→v]

T (11)
where h is the number of heads,
{W qi,W ki,W vi} ∈ Rd/h×d are the weight
matrices for each query, key and value, W ∈ Rd×d

is the weight matrix for h-head attention. αi

denotes the alignment score between each span in
the text and visual block in the image. Finally, we
obtain the final text-aware image representation
stv by stacking a fully-connected feed-forward
network (FFN) and two residual layers with
layer-normalization (LN) as follows:

s′tv = LN(st + st→v)

stv = LN(s′tv + FFN(s′tv))
(12)

3.5. Entity Classification
The input of the entity classifier is the multimodal
span representation su obtained by concatenating
the embeddings st and the embeddings stv, as
follows:

su = [st; stv] (13)
Then, we feed the final span representation su into
a fully-connected network to predict the probabili-
ties of entity types:

ŷ = softmax(MLP (su)) (14)

Since we regard MNER as a span-based multi-
classification task, we apply the span-level cross
entropy loss at training phase, as follows:

Lcls =
∑

(i,j,y)∈{X ,Y}|D|

−y(i,j)logŷ(i,j) (15)

where ŷ(i,j) is the prediction for the span s(i,j), and
y(i,j) is the ground truth.

By combining the loss functions from the main
classification task and the cross-modal information
bottleneck module, the overall loss function for SM-
NER is defined as:

L = Lcls + λ · Lcmib (16)
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Item Twitter-2015 Twitter-2017
Train Dev Test Train Dev Test

#PER 2217 552 1816 2943 626 621
#LOC 2091 522 1697 731 173 178
#ORG 928 247 839 1674 375 395
#MISC 940 225 726 701 150 157
#Tweets 4000 1000 3257 3373 723 723

Table 1: The statistical information of two MNER
datasets.

where λ is the hyper-parameter to balance the
different loss.

4. Experiments

4.1. Experimental Settings
Datasets. We compare SMNER with the ex-
isting methods on the two widely used bench-
mark datasets collected from social medias, in-
cluding: Twitter-2015 (Lu et al., 2018) and Twitter-
2017 (Zhang et al., 2018). There are four types
of named entities including: Person (PER)m Loca-
tion (LOC), Organization (ORG) and others (MISC)
that are annotated in the text. Table 1 shows the
detailed statistical information of the two datasets.

Implementation Configurations. We utilize Py-
torch framework to conduct experiments with 1
Nvidia 3090 GPU. The dimension size d is set to
768. For span encoder, the dimensions of the span
length embedding and morph embedding are set
to 50 and 100, respectively. In the cross-modal
information bottleneck module, we implement the
modal-specific MLPs for obtaining µ and σ using
3 fully-connected layers with ReLU activation func-
tion in each layer. We manually tune the hyper-
parameter β and λ, and achieve the best results
with β = 0.01 and λ = 0.1. ReLU is used as the de-
fault activation function unless otherwise specified.
All optimizations are performed with the AdamW
optimizer, where the decay is 0.01, the learning rate
is 1e− 5 and batch size is 16.

Baseline Methods. To demonstrate the effective-
ness of our model, we mainly compare our model
with three groups of state-of-the-art baselines. The
first group contains several representative text-
based NER approaches: BiLSTM-CRF (Huang
et al., 2015), CNN-BiLSTM-CRF (Ma and Hovy,
2016), HBiLSTM-CRF (Lample et al., 2016), BERT-
CRF (Kenton and Toutanova, 2019), SpanNER (Fu
et al., 2021). The second group contains sev-
eral competitive word-based MNER approaches
with various alignment strategies: VG (Lu et al.,
2018), AdaCoAtt (Zhang et al., 2018),UMT (Yu
et al., 2020), UMGF (Zhang et al., 2021), MAF (Xu

et al., 2022), HVPNeT (Chen et al., 2022), De-
bias (Zhang et al., 2023). And the third group
contains two competitive span-based MNER ap-
proaches: SMVAE (Zhou et al., 2022a), MRC-
MNER (Jia et al., 2023).

4.2. Main Results
Effectiveness. Table 2 represents the perfor-
mance comparision between SMNER and all base-
lines. As shown in the table, SMNER outperforms
all the compared methods on two datasets in terms
of F1 and achieves the second-best results in terms
of Prec. and Rec., which verifies the effectiveness
of our methods. We also draw the following obser-
vations:

(1) Among text-based methods, span-based
method performs better than CRF-based methods,
by comparing SpanNER with BERT-CRF. This can
be explained by the fact that the informal social
text usually faces challenges like short length and
out-of-vocabulary (OVV), which can be better ad-
dressed by the span-based methods.

(2) Visual features are generally helpful for text-
based methods on both datasets by comparing the
multimodal approaches with their corresponding
text-based baselines (such as, VG vs. HBiLSTM-
CRF, UMT vs. BERT-CRF and SMNER vs. Span-
NER). This indicates the necessary of incorporating
visual information for MNER task.

(3) Multimodal methods are not always superior
to unimodal methods (e.g., compare VG or Ada-
CoAtt with BERT-CRF or SpanNER). Since both
VG and AdaCoAtt directly incorporate the whole
image as global visual clues to enrich word rep-
resentation, which can inevitably introduce some
misalignment noise.

(4) Among multimodal methods, SMNER (ours)
not only significantly outperforms the word-based
baselines, but also outperforms the current state-
of-the-art span-based methods, confirming the ad-
vantage of the consistent multimodal alignment.
Although De-bias method consider the misalign-
ment issue, it obtained correlation information still
by associating words in the text with regions in the
image, and fails to align two modalities consistently,
causing inferior performance. Both SMVAE and
MRC-MNER are also span-based methods, but SM-
VAE ignores interactions between two modalities,
MRC-MNER requires additional tools or external
annotation data, which affects model’s accuracy
and adaptability.

Summarily, our method outperforms all these
state-of-the-art methods. We attribute the perfor-
mance gains of SMNER into its two advantages: 1)
a well-aligned global semantic space between the
two modalities achieved via the CMIB module, pro-
viding semantic regularization for the main task; 2)
a more precise fine-grained cross-modal semantic
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Modality Methods Twitter-2015 Twitter-2017
Pre. Rec. F1 Pre. Rec. F1

Text

BiLSTM-CRF 68.14 61.09 64.42 79.42 73.43 76.31
CNN-BiLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37
HBiLSTM-CRF 70.32 68.05 69.17 82.69 78.16 80.37
BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44
SpanNER∗ 70.09 74.27 72.54 83.91 84.46 84.18

Text+Image
(word-based)

VG 73.96 67.90 70.80 83.41 80.33 81.87
AdaCoAtt 72.75 68.74 70.69 84.16 80.24 82.15
UMT 71.67 75.23 73.41 85.28 85.34 85.31
UMGF 74.49 75.21 74.85 86.54 84.50 85.51
MAF 71.86 75.10 73.42 86.13 86.38 86.25
De-bias 74.45 76.13 75.28 87.59 86.11 86.84
HVPNeT 73.87 76.82 75.32 85.84 87.93 86.87

Text+Image
(span-based)

SMVAE 74.40 75.76 75.07 85.77 86.97 86.37
MRC-MNER 77.43 72.15 74.70 88.26 85.65 86.94
SMNER(ours) 75.34 76.81 76.06 88.15 87.47 87.81

Table 2: Performance comparison of different competitive baselines on two MNER datasets. The marker
∗ represents the models reproduced by us for MNER. The bold numbers indicate the best results and the
numbers with underline indicate the second-best results. And all improvement of our model are statistically
significant with p ≤ 0.05 under t-test.

Methods Twitter-2015 Twitter-2017 Size(M)Train(s) Test(s) Train(s) Test(s)
HVPNet 150.27 54.65 122.87 13.13 177.97
SMNER 130.60 28.94 94.54 6.52 169.89

Table 3: Comparison of average training and testing
time (seconds for one epoch) and the number of
parameters (Millions).

Methods Twitter-2015 Twitter-2017
Pre. Rec. F1 Pre. Rec. F1

SMNER 75.34 76.81 76.06 88.15 87.47 87.81
w/o CMIB 75.21 74.60 74.90 85.50 86.85 86.17
w/o CMA 74.58 75.52 75.05 87.19 86.33 86.76
w/o CMIB+CMA 73.52 74.34 73.93 84.73 86.23 85.48

Table 4: Ablation study of MNER.

alignment and interaction achieved by CMA, further
mitigating the noise introduced by misalignment.

Efficiency. We also compare SMNER with the
state-of-the-art model (HVPNet) in terms of the run-
time and model size. As shown in Table 3, the
model size of SMNER is smaller than HVPNet,
which indicates our model is simpler than HVPNet.
On the other hand, both the training and testing
speeds of our model are faster than HVPNet. No-
tice that, although our model enumerates the spans,
social posts text are often short, so it does not affect
the efficiency of our model.

4.3. Ablation Study
We do the ablation studies to further investigate the
effectiveness of the main components in our model,
as shown in Table 4.

From the information-theoretic view, removing
the CMIB module will significantly drop the per-
formance, which justifies that directly use image
embeddings produced by image-specific encoder
may bring noise and further shows the importance
of CMIB for alleviating the visual noise. From the
cross-modal interaction view, discarding the CMA
module also leads the performance drop, which in-
dicates the usefulness of capturing the fine-grained
correlations between two modalities. Furthermore,
removing both CMIB and CMA also leads to an ob-
vious performance drop, which indicates that both
CMIB module and CMA module make important
contributions to the final results.

4.4. Visualization for Modality-consistent

To indicated that our model can produce the consis-
tent text-image representations by applying CMIB
and CMA, we perform a text-image representation
visualization and a numerical distribution visualiza-
tion of text-image similarity, respectively, as shown
in Figure 3. Specifically, the samples used in this
analysis are from the test set of Twitter-2017. We
gathered the representations of text and image at
three stages: encoding of raw data, after employing
the CIMB, and after employing the CMA.

By comparing Figure 3(a) and 3(b), we can ob-
serve that the semantic distribution of the text and
image, after applying CMIB, exhibits a more consis-
tent distribution shape, and the distribution distance
significantly decreases. This phenomenon mani-
fests the effectiveness of the cross-modal semantic
alignment regularization by the CMIB component.

By comparing Figure 3(c) and 3(d), we can find
that, without applying the CMA, the most values of
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(a) T-SNE visualization of text and image 
representation  for raw data encoder

(b) T-SNE visualization of text and image 
representation after CMIB

(c) Numerical distribution of the text-image 
representation similarity for raw data encoder

(d) Numerical distribution of the text-image 
representation similarity after CMA

Figure 3: The visualization for modality-consistent.

text-image representation similarity are less than
zero. While the majority of sample pairs have simi-
larity values greater than 0, after applying the CMA.
This phenomenon further indicates the effective-
ness of the cross-modal alignment by the CMA
component. Therefore, we can confirm that adding
both the CMIB and CMA components could achieve
the semantic agreements between textual and vi-
sual representations.

4.5. Case Study via Attention
Visualization

To further validate the effectiveness of our pro-
posed model, Figure 4 presents two cases with the
cross-attention maps and the predicted results, pro-
duce by BERT-CRF (unimodal, text-based), HVP-
Net (multimodal, word-based) and SMNER (multi-
modal, span-based).

In case A, it is evident that both BERT-CRF
(based on text-only) and SMNER successfully rec-
ognize the entity correctly. Additionally, the cross-
attention of SMNER demonstrates a positive effect
on its prediction (e.g., in the second image, the
cross-attention of SMNER attends mostly to the re-
gions of object football in the image which is highly
related to text “World Cup"). However, the entity
predicted by HVPNet is incorrect and incomplete,
since lacking effective ways to map the semantic
of the objects in the image to the spans in the text.

In case B, Only SMNER successfully predicts
all entities, which further manifests the effective-
ness of consistent cross-modal alignment for the
MNER task. Since our model performs multimodal
alignment at two consistent levels, it often captures
complementary information from each level, and
then combines them to predict the answer effec-
tively. The BERT-CRF model relies solely on the
textual information, may not be able to distinguish
whether “Miss Bird Lake" refers to a location and

[World Cup MISC] 
CHAMPS ! Awesome 
job to everyone who 
played ! 

[World Cup MISC] 
CHAMPS ! Awesome 
job to everyone who 
played ! 

World [Cup MISC] 
CHAMPS ! Awesome 
job to everyone who 
played ! 

BERT-CRF SMNER HVPNet

(a) case A

Downtown [Austin 
LOC] with [Lady 
Bird Lake MISC] in 
the foreground

Downtown [Austin 
LOC] with [Lady 
Bird Lake LOC] in 
the foreground

Downtown [Austin 
LOC] with [Lady 
Bird Lake PER] in the 
foreground

BERT-CRF SMNER HVPNet

(b) case B

Figure 4: Two cases of the predictions by BERT-
CRF, HVPNeT and SMNER. For visualization,
both images and attention maps are scaled (from
red:high to blue:low). In text, we use different col-
ors mark entities: blue marks correct entities, red
marks wrong ones.

instead, it may tend to predict it as a PER entity
(based on the capitalization features of the words).
From the cross-attention heatmaps, we can see
that the HVPNet model allocates more interaction
attention to the tree regions in the image, which
results in the incorrect identification of “Miss Bird
Lake" as a MISC entity.

All in all, these results further validate the as-
sumption that our model is able to achieve more
consistent text-image alignment for multimodal
named entity recognition. However, we also found
that when a sentence contains multiple types of en-
tities, our model tends to make incorrect predictions.
We speculate that the main reason is that the entity
spans in the text do not have the corresponding
regions in the image (a case of modality missing),
and the textual information is insufficient, making it
difficult to make accurate predictions. An effective
solution would be to leverage external knowledge,
which can be further explored as future work.

5. Conclusion

In this paper, we propose SMNER, an effective
span-based method for MNER that achieves con-
sistent alignment of text and image modalities at
two levels: the global level and local level. Specif-
ically, SMNER comprises two key modules: the
CMIB module for the global semantic alignment
and denoising, and the CMA module for the lo-
cal semantic alignment and interaction. Through
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ablation studies, we further demonstrate the contri-
butions of both CMIB and CMA to our final perfor-
mance. Extensive experimental studies illustrate
that SMNER outperforms all the baselines on two
public benchmarks. In the future, we will explore
the application of CMIB in other multimodal tasks
for information compression and denoising.
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