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Abstract
NLP models have been known to perform poorly on user-generated content (UGC), mainly because it presents a lot
of lexical variations and deviates from the standard texts on which most of these models were trained. In this work,
we focus on the robustness of LASER, a sentence embedding model, to UGC data. We evaluate this robustness by
LASER’s ability to represent non-standard sentences and their standard counterparts close to each other in the
embedding space. Inspired by previous works extending LASER to other languages and modalities, we propose
RoLASER, a robust English encoder trained using a teacher-student approach to reduce the distances between
the representations of standard and UGC sentences. We show that with training only on standard and synthetic
UGC-like data, RoLASER significantly improves LASER’s robustness to both natural and artificial UGC data by
achieving up to 2× and 11× better scores. We also perform a fine-grained analysis on artificial UGC data and find
that our model greatly outperforms LASER on its most challenging UGC phenomena such as keyboard typos and
social media abbreviations. Evaluation on downstream tasks shows that RoLASER performs comparably to or better
than LASER on standard data, while consistently outperforming it on UGC data.

Keywords: sentence embeddings, robustness, user-generated content (UGC)

1. Introduction

Most Natural Language Processing (NLP) mod-
els are trained on “standard” texts, which are
edited and well written. When applied to user-
generated content (UGC), these models struggle
due to the high lexical variance induced by the pres-
ence of “non-standard” phenomena such as irregu-
lar spelling choices, evolving slang and marks of
expressiveness (Seddah et al., 2012; Eisenstein,
2013; van der Goot et al., 2018; Sanguinetti et al.,
2020). Table 1 illustrates some examples of non-
standard sentences with their standardised ver-
sions. UGC has been shown to have a negative
impact on NLP model performance in various tasks
such as machine translation (Belinkov and Bisk,
2018; Rosales Núñez et al., 2021a), dependency
parsing (van der Goot, 2019), sentiment analysis
(Kumar et al., 2020) and named entity recognition
(Plank et al., 2020).

This performance drop of NLP models is due to
their semantic vector representations (or embed-
dings) not being robust to UGC, i.e. non-standard
words and their standard counterparts do not have
similar embeddings, even if they have the same
meaning in the same context. Furthermore, com-
mon UGC phenomena such as acronyms (e.g. btw
→ by the way) and misspellings can greatly modify
the tokenisation of a sentence, making it hard to
represent the tokens of a UGC sentence and its nor-
malised version in the same space. Therefore, we
propose to tackle the problem at the sentence level:
we consider each sentence as a whole and aim for
a robust embedding that is not as affected by local,
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Figure 1: Teacher-Student approach.

surface-level lexical variations. We frame the ques-
tion of robustness to UGC as a bitext alignment
problem in the sentence embedding space: how
well can a sentence encoder align a standard text
with its non-standard counterpart and how close
are the two sentences in the embedding space?

Inspired by previous works extending the LASER
sentence encoder (Artetxe and Schwenk, 2019b)
to low-resource languages and the speech modal-
ity (Heffernan et al., 2022; Duquenne et al., 2022),
our approach is to train a student of LASER which
learns to map non-standard English sentences and
their standard versions close to each other in the
embedding space (see Figure 1). We compare
two model architectures (one token-level and one
character-aware), trained using artificially gener-
ated parallel UGC data, and we use popular bitext
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Corpus UGC sentence Standard(ised) sentence
MultiLexNorm⋄ if i cnt afford the real deal , i ain’t buying nuffin

fake .. i just won’t have it
if i can’t afford the real deal , i ain’t buying
nothing fake .. i just won’t have it

RoCS-MT‡ Umm idk, maybe its bc we’re DIFFERENT
PEOPLE with DIFFERENT BODIES???

Um, I don’t know, maybe it’s because we’re
different people with different bodies?

FLORES†

abr2 + fing
+ abr1

" Luckily nthing happened 2 me , but I saw a
macabre scene , as ppl triwd 2 break windows
in order 2 gt out .

"Luckily nothing happened to me, but I saw
a macabre scene, as people tried to break
windows in order to get out.

Table 1: Example non-standard sentences from 3 different UGC corpora and their standardised versions.
⋄: Twitter, ‡: Reddit, †: artificially augmented with UGC phenomena.

mining metrics for intrinsic evaluation. We also con-
duct an analysis of the robustness of LASER and
the student models to natural and artificial UGC
data in general and to each UGC phenomenon
type. Finally, we analyse the performance of the
models on standard data and downstream tasks
such as sentence (pair) classification and semantic
textual similarity.

With our robust English LASER encoder, we
open the door to cross-lingual and cross-modal
NLP applications on UGC data, thanks to LASER
being multilingual, flexible and modular (Duquenne
et al., 2022).

Our main contributions are:

1. a simple method to increase sentence-level
encoder robustness to UGC by reducing the
standard-UGC distance in the embedding
space;

2. RoLASER, a LASER student encoder for En-
glish more robust to natural and artificial UGC,
as well as c-RoLASER, its character-aware
equivalent;

3. a fine-grained analysis of model robustness to
artificial UGC data by UGC phenomenon type;

4. a simple combination of data augmentation
techniques for generating artificial real-life-like
UGC for training and evaluation in scenarios
where natural parallel UGC data is scarce.

We release our models and code at https://
github.com/lydianish/RoLASER.

2. Background and Related Work

Language-Agnostic SEntence Representations
(LASER) One of the pioneers of large-scale mul-
tilingual sentence embedding models, LASER has
known many improvements over time. The first
LASER model (Artetxe and Schwenk, 2019b) was
a multilingual bi-LSTM (Schuster and Paliwal, 1997)
encoder-decoder model that was trained using a
machine translation objective on 93 languages,

pooling the encoder’s outputs to obtain a fixed-
size sentence embedding. Li and Mak (2020) pro-
posed T-LASER, a version of LASER built on the
Transformer architecture (Vaswani et al., 2017) and
added a distance constraint to the translation loss
to bring parallel sentences closer in the embedding
space. After releasing LASER2, which presents
some improvements with respect to the original
LASER model, Heffernan et al. (2022) observed
that one of the major problems with it was the poor
representation of low-resource languages in the
multilingual sentence space. In order to tackle it,
they used a teacher-student approach inspired by
knowledge distillation (Hinton et al., 2015) to train
Transformer-based encoders (student models) on
monolingual and parallel xx→English data to mimic
the behaviour of LASER2 (the teacher model).
Each of these students, called LASER3, targeted
a specific low-resource language. Duquenne et al.
(2022) built on this approach to build Translation
Modules (T-Modules) for multilingual cross-modal
translation. They trained speech and text encoders
to learn from LASER2, and also trained decoders
from the LASER embedding space. Tan et al.
(2023) proposed LASER3-CO, a variant of LASER3
that integrates contrastive learning. In our work, we
adapt the teacher-student approach for UGC En-
glish using a similar training setup to T-Modules,
particularly the training loss.

Improving Model Robustness to UGC Data
One solution to recover the performance drop of
NLP models is to train or fine-tune them on UGC
data. However, the scarcity of parallel annotated
UGC data poses a problem. For instance, most
available datasets for training or evaluating the ma-
chine translation of UGC contain only a few thou-
sand bitexts, e.g. MTNT (Michel and Neubig, 2018),
PFSMB (Rosales Núñez et al., 2019) and RoCS-
MT (Bawden and Sagot, 2023). To mitigate this,
data augmentation techniques have been explored
to generate synthetic UGC training data. In partic-
ular, rule-based techniques consisting of character-
and word-level edit operations and perturbations,

https://github.com/lydianish/RoLASER
https://github.com/lydianish/RoLASER


10986

as well as dictionary-based techniques, have been
used to improve the robustness of NLP models
to synthetic and natural UGC (Belinkov and Bisk,
2018; Karpukhin et al., 2019; Matos Veliz et al.,
2019; Dekker and van der Goot, 2020; Samuel and
Straka, 2021). In our work, we combine various
types of such transformations to generate synthetic
UGC data from standard data. We also analyse per-
formance by UGC phenomenon type, similarly to
Rosales Núñez et al. (2021a). Data augmentation
has also been used to train monolingual sentence
models with a focus on improving the separation
between similar and dissimilar sentences in the
embedding space (Yan et al., 2021; Chuang et al.,
2022; Tang et al., 2022). Our work, however, aims
to bring closer UGC sentences and their standard
counterparts on the basis that they are in fact similar.
Other works have also shown that character-level
models can be more robust to non-standard data in
such low-resource scenarios (Rosales Núñez et al.,
2021b; Riabi et al., 2021; Libovický et al., 2022),
which motivates us to also explore using a student
model with a character-level input embedding layer.

3. Proposed Approach: Reducing the
Standard-UGC Distance in the

Embedding Space

We propose to train a sentence embedding model
that is robust to non-standard UGC text, such that
the representation assigned to non-standard text
is as close as possible to its normalised equivalent
without degrading model performance on standard
text. We choose to work with the LASER model
and aim therefore to encode non-standard text into
the LASER embedding space. Although we evalu-
ate on English in this article, this also leaves open
the possibility in the future of working with other
languages (for which LASER representations are
also available).

Inspired by the teacher-student approach in
LASER3 (Heffernan et al., 2022) and T-Modules
(Duquenne et al., 2022), we train a student model
on standard English and UGC English data with
LASER2 as the teacher (see Figure 1). The train-
ing loss is a mean-squared error (MSE) loss, and
the student model learns to minimise the distance
between the two output sentence embedding vec-
tors. As a result, it makes both standard and non-
standard sentences as close as possible to the
teacher’s standard embeddings. This should, in
theory, make it more robust to UGC phenomena.
A similar approach has also been successfully ap-
plied to making monolingual sentence embeddings
multilingual (Reimers and Gurevych, 2020).

With LASER2 as the teacher model, we sepa-
rately train two student models. The first is (BPE-
based) token-level with the same architecture as

RoBERTa (Liu et al., 2019), which we refer to
as RoLASER (Robust LASER). We also train a
character-aware student for comparison. It has a
similar architecture to the first one, except for the
input embedding layer, which is character-level. We
refer to this model as c-RoLASER. From this point
forward, LASER will be used to refer to LASER2.

Given the scarcity of natural UGC data to train
such a model, we artificially generate non-standard
data from standard English sentences. We achieve
this by applying selected transformations from NL-
Augmenter1 (Dhole et al., 2021), namely:2

• insertion of common social media abbrevia-
tions, acronyms and slang words (abr1, abr2,
abr3, slng);

• contraction and expansion of auxiliary verbs
(cont), e.g. I am ↔ I’m, and of names of
months and weekdays (week), e.g. Mon. ↔
Monday;

• insertion of misspellings such as keyboard ty-
pos or “butter fingers” (fing); homophone
(homo) and dyslexia (dysl) errors, e.g. there
↔ their, lose ↔ loose; and other common
spelling mistakes (spel);

• visual and segmentation transformations such
as Leet Speak3 (leet), e.g. love → l0V3; and
whitespace insertion and deletion (spac).

We also define a mix_all transformation that
randomly selects and applies a subset of the previ-
ous perturbations. For example, the last UGC sen-
tence in Table 1 was obtained via a mix_all trans-
formation which applied abr2, fing and abr1 to
a standard sentence.

4. Evaluating Robustness

Intuitively, the embedding space is robust if vari-
ants of the same sentence are embedded into vec-
tors that are close to one another, i.e. they ideally
have similar representations. However, although
designed to be a semantic space, it is natural for
non-semantic aspects of sentences to be repre-
sented in the space too (e.g. syntactic variations,
language, formality, etc.), and for semantic equiv-
alents therefore not to have identical embeddings.
For the applications we envisage, our aim is for non-
standard texts to be assigned embeddings that are
as close as possible such that the surface form of
the sentences does not impact the embeddings. To

1https://github.com/GEM-benchmark/
NL-Augmenter

2See Appendix A for the detailed list of transforma-
tions and random generation techniques.

3https://en.wikipedia.org/wiki/Leet

https://github.com/GEM-benchmark/NL-Augmenter
https://github.com/GEM-benchmark/NL-Augmenter
https://en.wikipedia.org/wiki/Leet
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evaluate this, we use several metrics for evaluat-
ing embeddings (Section 4.1) and several English
normalisation-centric datasets, including both natu-
ral and artificial non-standardness (Section 4.2).

4.1. Evaluation Metrics
The metrics we use are pairwise cosine distance as
well as xSIM and xSIM++, two metrics previously
used for evaluating sentence embeddings through
the proxy task of bitext mining.

Average Pairwise Cosine Distance We com-
pute the cosine distances between the embeddings
of each non-standard sentence and its normalised
version and then average over all sentences in the
text. For the sake of brevity, we will subsequently
refer to it simply as cosine distance.

xSIM and xSIM++ Cross-lingual similarity search,
or xSIM (Artetxe and Schwenk, 2019a), is a proxy
metric used for bitext mining. Given a set of paral-
lel sentences in languages A (the source) and B
(the target), it aligns sentences via margin-based
similarity scores. It then computes the error rate
of aligning each language A sentence with its lan-
guage B translation from the pool of candidates (all
language B sentences). xSIM++ is an extended ver-
sion of the metric that discriminates better between
systems and correlates more with performance on
downstream tasks. It was proposed by Chen et al.
(2023), who noted that xSIM was not challenging
enough for many language pairs, given that the
sentences in the candidate pool were often too se-
mantically distinct (see Appendix B). xSIM++ relies
on augmenting the target set with hard negative
examples, created by applying transformations that
perturb the meaning of the sentences with minimal
alteration to their surface form (causality alternation,
number replacement and entity replacement). Note
that xSIM was initially designed to be used in con-
junction with the FLORES-200 dataset (see Sec-
tion 4.2) and xSIM++ only augmented the English
sets (making them approximately 44 times larger).
xSIM++ can therefore currently only be evaluated
on xx→English language pairs from FLORES-200.

4.2. Evaluation Data
We evaluate on three English test sets representing
different types of parallel non-standard data and
their normalised versions.4 We use two existing
datasets of natural UGC (MultiLexNorm and RoCS-
MT). However, in order to do a finer-grained analy-
sis, we also create artificial UGC from FLORES-200
by applying multiple transformations. Examples

4In practice, the definition of normalised depends on
the annotation guidelines chosen.

from the three evaluation sets we use are provided
in Table 1, and basic statistics are given in Table 2.
Note that UGC texts tend to have fewer tokens than
their standard counterparts, mainly due to the fre-
quent use of acronyms and abbreviations. The
lexical diversity of the datasets is indicated using
the type-token ratio (TTR).5

MultiLexNorm (van der Goot et al., 2021) is a
multilingual dataset created for the lexical normali-
sation task. We use the English subset, consisting
of sentences from Twitter and their manual normal-
isations. The data is pretokenised and lowercased.

RoCS-MT (Bawden and Sagot, 2023) is a multi-
lingual dataset for the task of machine translation
of UGC English into other languages: Czech (cs),
German (de), French (fr), Russian (ru) and Ukra-
nian (uk). The source sentences are from Reddit,
and manual normalisations are also provided. Un-
like MultiLexNorm, the data is not pretokenised nor
lowercased. Casing is kept intact in the original
sentences, and normalised in the standard ones.

FLORES-200 (NLLB Team et al., 2022) is a mul-
tilingual dataset consisting of parallel texts from
WikiNews, WikiBooks and WikiVoyage in 200 lan-
guages. We artificially transform its English subset
with UGC phenomena from NL-Augmenter as de-
scribed in Section 3. We subsequently refer to the
original corpus as FLORES, and to the artificially
augmented one as FLORES†.

5. Experimental Setup

Training Data We use 2 million standard English
sentences of the unshuffled deduplicated OSCAR6

dataset (Ortiz Suárez et al., 2019), representing
648MB of text. The data is split into 100 chunks
of 20k sentences, each of which is artificially aug-
mented with UGC phenomena using the mix_all
transformation with probability pall = 0.1 (described
in Appendix A) and a different random seed, pro-
ducing a 2M-sentence “bilingual” standard-UGC
dataset. The standard sentences are passed to the
teacher, while their augmented ones are passed
to the student. Note that by setting a probability to

5The TTR is the number of unique tokens divided by
the total token count; the more lexically diverse a text
is, the higher the TTR. Previous work has shown that
UGC texts tend to have a higher TTR due to multiple
variants of the same word (Rosales Núñez et al., 2021a).
We compute TTR based on LASER’s SentencePiece
tokenisation (Kudo and Richardson, 2018).

6https://huggingface.co/datasets/
oscar/viewer/unshuffled_deduplicated_en

https://huggingface.co/datasets/oscar/viewer/unshuffled_deduplicated_en
https://huggingface.co/datasets/oscar/viewer/unshuffled_deduplicated_en
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FLORES MultiLexNorm RoCS-MT
dev devtest train dev test test

Metric std std std UGC std UGC std UGC std UGC
# sentences 997 1012 2360 2360 590 590 1967 1967 1922 1922
# tokens 36.7k 38.9k 76.1k 75.8k 19.8k 19.7k 63.3k 63.1k 43.0k 40.8k
TTR 9.10 8.82 5.98 6.06 14.49 14.71 6.86 6.95 6.34 7.16
(TTR ratio) (1.01) (1.02) (1.01) (1.13)

Table 2: Description of standard (std) and UGC data. TTR=Type-Token Ratio, TTR ratio=TTRUGC/TTRstd.

apply transformations, not all sentences are aug-
mented.7 Furthermore, replacement-based trans-
formations may leave the original sentence un-
changed if they find no candidate words to replace.
As a result, the student model also sees standard
sentences and learns to encode them (Figure 1).

Text Preprocessing When fetching OSCAR
data, we replace HTML line-breaking characters,
do sentence splitting and filter out sentences with
less than 90% of common English characters. Af-
terwards, we apply the same preprocessing steps
as LASER on all data, namely: removal of non-
printable characters, punctuation normalisation
and lowercasing (Artetxe and Schwenk, 2019b).
The teacher input texts are then tokenised with
LASER’s SentencePiece (Kudo and Richardson,
2018) model (vocabulary size 50,004), and the
RoLASER student inputs using RoBERTa’s Sen-
tencePiece tokeniser (vocabulary size 50,265). As
for the c-RoLASER student, the inputs are pre-
tokenised on whitespace and punctuation using
BERT’s pretokeniser (Devlin et al., 2019).8

Architectures LASER9 is a 45M-parameter en-
coder with 5 bi-LSTM layers and an output embed-
ding dimension of 1,024. RoLASER is a 108M-
parameter, 12-layer Transformer encoder with 12
attention heads and a 768-output dimension, simi-
larly to RoBERTa (without the final pooling layer).
c-RoLASER is a 104M-parameter encoder with the
same architecture as RoLASER except for the input
embedding layer, which is a Character-CNN similar
to the one used in CharacterBERT (El Boukkouri
et al., 2020). Note that the students’ output di-
mension is smaller than LASER’s. Therefore, sim-
ilarly to Mao and Nakagawa (2023), we add a lin-
ear layer to the student encoders to project their
outputs to the right size. The outputs from the
teacher and students are then max-pooled to ob-
tain sentence embedding vectors. Regarding the

7In our case, 563,343 sentences (≈ 28.2%) are not
transformed (see Figure 3 in Appendix A).

8https://huggingface.co/google-bert/
bert-base-cased

9https://github.com/facebookresearch/
LASER

pooling strategy, Duquenne et al. (2022) showed
that max-pooling works better than CLS-pooling
for LASER students, probably because LASER it-
self was trained with max-pooling. While many
teacher-student sentence embedding models use
mean-pooling (Reimers and Gurevych, 2020; Ham
and Kim, 2021; Mao and Nakagawa, 2023), our pre-
liminary experiments showed that max-pooling con-
sistently performs slightly better than mean-pooling
during validation. All model implementation and
training are done using the Fairseq toolkit (Ott et al.,
2019).

Training The teacher model remains frozen dur-
ing training. Both student models are separately
trained on 8 Tesla V100-SXM2 GPUs with a maxi-
mum number of 4,000 tokens per batch per GPU
(without gradient accumulation); an Adam opti-
miser with parameters β = (0.9, 0.98) and ϵ =
10−6; learning rates of 10−4 for RoLASER and
5 × 10−5 for c-RoLASER, both with 1,000 warm-
up updates; standard, attention and activation
dropouts of 0.1; and a clip norm of 5. Similarly
to T-Modules (Duquenne et al., 2022), the train-
ing criterion is encoder similarity, and the training
loss is an MSE loss with sum reduction. A check-
point is saved every 30,000 steps. Our preliminary
experiments also showed that initialising the stu-
dent with a pre-trained language model performed
better during validation than random initialisation.
We therefore initialise RoLASER with RoBERTa,10

and c-RoLASER with CharacterBERT.11 Table 3
describes further details of the training checkpoints.

Model #Params. #Epochs #Steps #Hours
RoLASER 108M 100 683k 86

98 669k
c-RoLASER 104M 34 750k 170

32 726k

Table 3: Training details of student models. Best
checkpoints are in bold. Trained on 8 GPUs.

10https://huggingface.co/FacebookAI/
roberta-base

11https://huggingface.co/helboukkouri/
character-bert

https://huggingface.co/google-bert/bert-base-cased
https://huggingface.co/google-bert/bert-base-cased
https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/helboukkouri/character-bert
https://huggingface.co/helboukkouri/character-bert
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Validation The best checkpoint is selected by
taking the student model that minimises the MSE
distance between the teacher’s representation of
standard text and the student’s representations of
(i) standard text and (ii) UGC text, i.e.:

loss = MSE(L[std],m[std])+MSE(L[std],m[ugc]),

where L[x] and m[x] refer respectively to the
teacher and student’s representation of x, where
x can either be standard (std) or UGC (ugc) text.
Framing it as a sum of two losses allows us to
monitor the model’s learning to minimise both dis-
tances with respect to the same anchor, using the
sentence triplet (L[std],m[std],m[ugc]). This is dif-
ferent from the training loss which minimises both
distances separately, i.e. via two separate sentence
pairs (L[std1],m[std1]) and (L[std2],m[ugc2]). For
each saved checkpoint, we compute the valida-
tion loss on the dev set of FLORES (which is also
augmented with the mix_all transformation) and
select the checkpoint with the lowest loss.12

6. Results and Analysis

We evaluate LASER, RoLASER and c-RoLASER
on the MultiLexNorm and RoCS-MT test sets. We
also generate artificial data by applying each of the
UGC transformations described in Section 3 to the
standard FLORES devtest 10 times with different
generation seeds, and we evaluate the models on
the generated FLORES† sets. We first conduct
an intrinsic evaluation of the student models’ ro-
bustness in Section 6.1 where we analyse whether
the student models are better at representing UGC
data compared to LASER, and whether they are as
good as LASER on standard English. We then con-
duct an extrinsic evaluation in Section 6.2 where we
analyse their performance on downstream tasks
such as sentence (pair) classification and semantic
textual similarity.

6.1. Intrinsic Evaluation
In theory, a sentence embedding model would
be robust to UGC if the cosine distance be-
tween standard and non-standard sentence pairs
is small enough to ensure a perfect similarity align-
ment score. In practice, we aim to reduce co-
sine distances and similarity alignment error rates
scores as much as possible. For each model
m, we evaluate whether the distance between
m[ugc] and m[std] has effectively reduced, and
whether that translates into lower search error rates.
We perform xSIM (and xSIM++ for FLORES) on
UGC→standard English bitexts. We determine the

12We use a different random seed from the ones se-
lected for augmenting the training set.

statistical significance of the student model results
using an independent 2-sample t-test compared
to LASER’s scores. We also compute the TTR
of generated FLORES† files to gauge their non-
standardness level, as well as their t-test compared
to the TTR of the original FLORES text, and we in-
dicate the TTR ratio with respect to the standard
text. We report results on natural test sets in Sec-
tion 6.1.1, results on the artificial test sets for each
UGC phenomenon type in Section 6.1.2, and on
standard data in Section 6.1.3.

MultiLexNorm RoCS-MT
Model cos dist xSIM cos dist xSIM
LASER 0.03 0.10 0.09 4.06
RoLASER 0.02 0.05 0.06 2.34
(improv.) (2.0×) (1.7×)
c-RoLASER 0.01 0.10 0.05 3.80
(improv.) (1.0×) (1.1×)

Table 4: Cosine distance and xSIM scores on
UGC→standard English bitexts from natural UGC
test sets. The best score for each metric is in bold.

6.1.1. Results on Natural UGC

Table 4 illustrates the cosine distance and xSIM
scores of the three models on UGC→standard En-
glish bitexts from the MultiLexNorm and RoCS-MT
test sets. We observe that both student models re-
duce the cosine distance across the board. We also
note that RoCS-MT is a more challenging evalua-
tion set as it produces much greater distances and
error scores, which is consistent with it having the
highest TTR ratio (Table 2). While RoLASER out-
performs LASER with ≈ 2× better xSIM scores, we
observe a contradictory tendency for c-RoLASER:
despite having the lowest cosine distances, it pro-
duces minimal performance gains over LASER.
We will show in Section 6.1.3 that this is because
c-RoLASER has, on average, larger distances be-
tween its standard embeddings and LASER’s.

To visually compare the students’ and LASER’s
sentence representations, we use a 2-component
PCA dimension reduction of the LASER sentence
space. In Figure 2, we plot the embeddings of
the UGC sentence “I then lost interest in her bc
her IG wasn’t that interesting.” from RoCS-MT,13

its normalised version “I then lost interest in her,
because her Instagram wasn’t that interesting.”,
and its translations in five other languages. We
evaluate the distance preservation in the reduced
dimensions and obtain a Spearman’s correlation
of r = 0.69 between Euclidean distances in the
reduced and original space. We observe that

13We choose this example because it illustrates the
trends observed on the RoCS-MT test set.
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both RoLASER and c-RoLASER have a shorter
standard-UGC distance than LASER. Furthermore,
RoLASER’s standard and UGC embeddings are
closer to LASER’s than any of the other languages.
However, c-RoLASER’s standard embedding re-
mains far from LASER’s, which explains its poor
xSIM scores.

0.150 0.125 0.100 0.075 0.050 0.025 0.000 0.025
PCA dim 1

0.200

0.175

0.150

0.125

0.100

0.075

0.050

PC
A 

di
m

 2

cs

de
fr

ru

uk
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Figure 2: Visualisation of the first 2 principal com-
ponents of the LASER space. The points represent
the embeddings of a UGC sentence from RoCS-MT,
its standardised version (std), and its translations
into other languages (tra).

6.1.2. Results by UGC Phenomenon Type

Table 5 illustrates the cosine distance and the
xSIM++ scores of the three models on the
FLORES† devtest for all UGC types, as well as the
ratio of TTRs of the UGC texts with respect to the
standard text.14 We report the xSIM results in Ta-
ble 9 (Appendix C). All of LASER’s xSIM++ scores
are (highly) significantly15 different from zero (the
expected mean), suggesting a lack of robustness
of LASER to artificial UGC types.

We observe that both student models have highly
significantly reduced the cosine distances to close
to zero. We also note that cosine distance scores
for LASER on most UGC types are less than 0.07,
which is the minimum, or 0th percentile, for LASER
on all xx→English FLORES language pairs (see
Figure 5 in Appendix B). In other words, LASER
mostly represents UGC English closer to standard
English than it does all the other languages, which
is reasonable considering UGC English is still En-
glish. The UGC type that it embeds the furthest

14See Figure 4 in Appendix A for more interpretation
of the TTR ratios.

15significant: p < 0.05, highly significant: p < 0.001.

from standard English is leet with a cosine dis-
tance of 0.22, which is in the 35th percentile. This
means LASER considers that 35% of FLORES lan-
guages are closer to standard English than Leet
Speak English.

With xSIM++, the three most challenging trans-
formations for LASER are leet, space and fing.
Intuitively, they are the ones that “shatter” sub-
word tokenisation the most because they perform
character-level perturbations. In fact, leet and
fing have the lowest and highest TTR ratios re-
spectively. The next batch of challenging transfor-
mations apply more word-level perturbations (abr2
and homo). Other noteworthy transformations are
the ones with very low xSIM++ scores and cosine
distances of zero: abr3, cont, week. Finally,
the results suggest that mix_all is challenging
enough to be a good attempt at generating com-
prehensive, real-life-like artificial UGC.

RoLASER outperforms LASER artificial UGC
(as shown by the 10.8× better xSIM++ score on
mix_all). We also observe major performance
gains for several UGC transformations: 22.7× bet-
ter for leet, and between 3.9× and 10.6× for most
of the other types. fing remains the most chal-
lenging one for RoLASER as it obtains the high-
est cosine distance and xSIM++ score (which is
still 2.8× better than LASER’s). Lastly, RoLASER
slightly degrades LASER’s performance on cont
and abr3. This is likely because these phenom-
ena are already frequent in standard data, which
means that the original LASER has already been
trained to deal with them efficiently. It could also
be that they perform minimal perturbations on the
original text (as shown by their TTR ratio of 1.00).

We also note that all the RoLASER xSIM++
scores are less than 7.21%, which is the minimum
score for LASER on all xx→English FLORES lan-
guage pairs (see Figure 6 in Appendix B). It is akin
to saying that RoLASER aligns UGC English to
standard English better than LASER does all the
other languages.

However, the c-RoLASER results are disappoint-
ing: it degrades the performance on all types, ex-
cept for leet, fing and spac, and it never outper-
forms RoLASER. This is consistent with the results
on natural UGC that c-RoLASER struggles to map
its standard embeddings to LASER’s.

6.1.3. Results on Standard Data

It is also important to evaluate whether the stu-
dent models’ reduced UGC-standard distances in-
troduce a performance drop on standard data. In
theory, this should not be the case since they are
also trained to minimise the distance between their
standard embeddings m[std] on the one hand, and
LASER’s standard embeddings L[std] on the other.
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UGC type abr1 abr2 abr3 cont dysl fing homo leet slng spac spel week mix_all
(TTR ratio) (0.93**) (0.98**) (1.00**) (1.00**) (0.99**) (1.05**) (0.98**) (0.76**) (0.98**) (1.01*) (1.02**) (1.00**) (1.01**)

Average pairwise cosine distance
LASER 0.03 0.08 0.00 0.00 0.04 0.07 0.05 0.22 0.02 0.09 0.04 0.00 0.05
RoLASER 0.00** 0.00** 0.00 0.00 0.00** 0.02** 0.00** 0.01** 0.00** 0.01** 0.01** 0.00 0.00**
c-RoLASER 0.00** 0.01** 0.00 0.00 0.01** 0.01** 0.01** 0.00** 0.01** 0.03** 0.01** 0.00 0.01**

xSIM++
LASER 4.01 15.81 0.10 0.20 5.83 19.60 10.13 68.60 2.39 22.76 7.85 2.08 13.17
RoLASER 0.75* 1.58** 0.40 0.40 0.79** 7.09* 0.96** 3.03** 0.61** 2.45** 2.14** 0.40** 1.22**
(improv.) (5.4×) (10.0×) (7.4×) (2.8×) (10.6×) (22.7×) (3.9×) (9.3×) (3.7×) (5.2×) (10.8×)
c-RoLASER 13.16 19.37 11.76 12.94 15.71 13.49 16.93 12.56** 14.54 19.72 15.00 11.46 15.74
(improv.) (1.5×) (5.5×) (1.2×)

Table 5: Cosine distance and xSIM++ scores for all models on UGC→standard English bitext from each
UGC type of FLORES† devtest, averaged across 10 data generation seeds. The best score for each type
is in bold. *: p < 0.05, **: p < 0.001, statistical significance with respect to LASER’s scores.

cs→en de→en fr→en ru→en uk→en
Model [en] UGC std UGC std UGC std UGC std UGC std
LASER 9.11 3.28 6.56 0.83 10.20 4.68 11.76 5.93 8.79 2.39
RoLASER 7.23 3.33 4.94 0.73 9.21 4.79 10.15 4.89 6.61 2.34
c-RoLASER 13.94 7.49 9.78 4.37 15.04 9.31 16.44 10.87 13.53 7.13

en→cs en→de en→fr en→ru en→uk
Model [en] UGC std UGC std UGC std UGC std UGC std
LASER 9.11 2.71 5.83 0.57 10.87 5.10 11.71 5.88 8.79 2.55
RoLASER 7.02 3.17 4.58 0.83 8.64 5.20 10.20 6.35 6.04 2.34
c-RoLASER 18.26 9.16 13.16 5.52 19.25 11.76 23.31 14.36 17.74 8.58

Table 6: xSIM scores on xx→English and English→xx bitexts from RoCS-MT. The results compare all
models for embedding UGC and standard (std) English. Only LASER is used to embed the non-English
languages. The best score for each language pair is in bold.

We evaluate all models on the task of bitext
alignment on the five xx-English language pairs of
RoCS-MT. Table 6 shows the xSIM scores in both
xx→English and English→xx directions,16 where
English is either UGC or standard (std). LASER
is used to embed all non-English sentences, while
both LASER and the student models are used for
the English sentences.

As is expected, standard English consistently
produces better results than UGC for all the mod-
els. We also observe that RoLASER improves on
LASER’s performance for standard English in the
xx→English direction. This is likely because the stu-
dent specialised in standard English as the target
language during training. In the English→xx direc-
tion however, RoLASER only surpasses LASER
about half the time. As for UGC English, we ob-
serve that RoLASER produces the best results
in both directions, while c-RoLASER degrades
LASER’s performance.

To better understand these results, we compare
the standard English embeddings from the student

16xSIM is not symmetrical: scores are not comparable
across both language pair directions (Chen et al., 2023).

Model FLORES MultiLexNorm RoCS-MT
RoLASER 0.02 0.04 0.05
c-RoLASER 0.05 0.09 0.13

Table 7: Cosine distance between the students’
and LASER’s standard embeddings.

models with LASER’s on all test sets. We illus-
trate in Table 7 the average pairwise cosine dis-
tance between them. They show that RoLASER
has managed to effectively minimise the distance
between its standard embeddings and LASER’s,
which manifests as performance gains observed
in the bilingual alignments (Table 6). However,
c-RoLASER struggles to map its standard embed-
dings to LASER’s, especially on RoCS-MT. This
explains its poor performance in general. In other
words, c-RoLASER has successfully reduced the
distance between its UGC and standard embed-
dings to almost zero (see Table 5), but it lags behind
when bridging the gap between its standard embed-
dings and LASER’s. One reason for this could be
that character-level tokenisation results in very long
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sequences, making it a difficult task for the model
pool their representations into one fixed-sized vec-
tor capturing all semantic information. Nonethe-
less, we suspect that c-RoLASER could benefit
from longer and better optimised training.

6.2. Extrinsic Evaluation
To support the results of the intrinsic evaluation
(Section 6.1), we evaluate our models’ performance
on downstream tasks from MTEB, the Massive Text
Embedding Benchmark (Muennighoff et al., 2023).
We select four tasks spanning three types:

1. Sentence classification, which predicts la-
bels from sentence embeddings, e.g. sen-
timent labels: TweetSentimentExtrac-
tionClassification (T-SentExt).

2. Sentence pair classification, which pre-
dicts a binary label from sentence em-
beddings, e.g. whether two sentences are
paraphrases: TwitterSemEval2015 (T-
SemEval) and TwitterURLCorpus (T-URL).

3. Semantic textual similarity, which examines
the degree of semantic equivalence between
two sentences: STSBenchmark (STS).

Note that the first three tasks are evaluated on UGC,
specifically Twitter data. The last one is evaluated
on more standard texts from image captions, news
headlines and user forums.

Model T-SentExt⋄ T-SemEval† T-URL† STS‡

LASER 50.64 59.57 81.48 69.77
RoLASER 51.96 60.68 81.79 69.61
c-RoLASER 49.29 55.32 76.80 68.13

Table 8: Scores (%) on 4 MTEB tasks. The best
score for each metric is in bold. ⋄: accuracy, †: av-
erage precision on cosine similarity, ‡: Spearman’s
correlation on cosine similarity.

Table 8 shows the scores of our models on the
four tasks (along with their corresponding evalua-
tion metrics). RoLASER consistently outperforms
LASER on the first three tasks on Twitter data, while
it is almost as good as LASER on the standard STS
task. This is in agreement with our findings in Sec-
tion 6.1 that RoLASER is better than LASER at
encoding non-standard data and achieves compa-
rable performance on standard data. On the other
hand, c-RoLASER remains the worst across all
tasks and greatly degrades LASER’s performance.

7. Conclusion

In this work, we frame the question of LASER’s
robustness to UGC as a bitext alignment problem

where we aim to align standard sentences and their
non-standard equivalents. We propose RoLASER,
a Transformer-based encoder student of LASER,
trained with the objective of minimising the dis-
tances between standard and non-standard sen-
tence pairs in the embedding space. The model
is trained solely on standard and synthetic UGC-
like English data. We also consider a character-
aware student, c-RoLASER, and find that the token-
level RoLASER performs best overall while the
c-RoLASER struggles to map its standard embed-
dings to LASER’s.

We find that RoLASER is significantly more ro-
bust than LASER on natural UGC, achieving up
to 2× better xSIM scores. We also evaluate it on
standard data and downstream tasks and show
that it improves, or at least matches, LASER’s per-
formance. Furthermore, we perform a fine-grained
analysis of the models’ robustness with respect to
artificially generated data by type of UGC phenom-
ena. We show that RoLASER achieves roughly
11× better xSIM++ scores than LASER on artifi-
cial UGC, and up to 23× better on Leet Speak, the
most difficult UGC type for LASER. We also find
that the most challenging phenomena are those
with character-level perturbations that shatter sub-
word tokenisation.

For future work, we plan to extend RoLASER
to more languages and their corresponding UGC
phenomena. We will also consider ways to improve
c-RoLASER, such as using a thin-deep architec-
ture (Tay et al., 2022), or a token-level model with
a small enough vocabulary size to be close to the
character level.

8. Limitations

The ambiguity introduced by non-standard words in
language could be problematic. For example, smh
could mean shaking my head or so much hate, and
our approach would try to map both to the same
space. One way to resolve this ambiguity would
be to use the surrounding sentences as context.
Though it is an interesting line of research to pursue,
it is outside the scope of this article. Thankfully,
such cases are rare and the model has proved to
do well in general across multiple UGC types.

There is also a possible domain mismatch be-
tween the type of data used to train the our mod-
els and the data on which we test. RoLASER is
trained and validated on standard data artificially
augmented with UGC phenomena and is evaluated
on (scarce) parallel UGC data from social media.
However, the results show that the model is able to
generalise well on natural UGC data without having
been trained or fine-tuned on it.
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Appendices

A. Transformations for Artificial UGC
Generation

Below is the detailed list of transformations selected
from NL-Augmenter for artificial UGC generation.

1. abr1 (abbreviation_transformation):17 re-
places words or phrases with their abbreviated
counterpart using a web-scraped slang dictio-
nary (with default probability p = 0.1)

2. abr2 (insert_abbreviation): replaces words
or phrases with their abbreviated counterpart
from a list of common generic and social media
abbreviations

3. abr3 (replace_abbreviation_and_acronyms):
swaps the abbreviated and expanded forms
of words and phrases from a list of common
abbreviations and acronyms in business com-
munications

4. cont (contraction_expansions): swaps com-
monly used contractions and expansions, e.g. I
am ↔ I’m

5. dysl (dyslexia_words_swap): replaces words
with their counterparts from a list of frequently
misspelled words for dyslexia, e.g. lose ↔
loose

17Name of the transformation module in NL-Augmenter.
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6. fing (butter_fingers_perturbation): swaps let-
ters with one of their QWERTY keyboard neigh-
bours (p = 0.05)

7. homo (close_homophones_swap): replaces
words with one of their homophones (p = 0.5),
e.g. there ↔ their

8. leet (leet_letters): replaces letters with their
Leet18 equivalents (p = 0.1), e.g. love → l0V3

9. slng (slangificator): replaces words (in par-
ticular, nouns, adjectives, and adverbs) with
their corresponding slang from a dictionary of
English slang and colloquialisms

10. spac (whitespace_perturbation): adds or
remove a whitespace at random positions
(padd = 0.05, premove = 0.1)

11. spel (replace_spelling): replaces words with
their counterparts from corpora of frequently
misspelled words (p = 0.2)

12. week (weekday_month_abbreviation): abbre-
viates or expands the names of months and
weekdays, e.g. Mon. ↔ Monday
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Figure 3: Distribution of transformations obtained
by applying mix_all on 2M training sentences.

We also implement a mix_all transformation
that combines perturbations from some of the 12
transformations. Firstly, a subset of the transforma-
tions is uniformly selected with probability pall = 0.1.
Then they are shuffled, ensuring that they are not
always applied in the same order. Lastly, for the
transformations that depend on a probability pa-
rameter p, let pd denote its default value. The value
of p is randomly selected between { 12pd, pd, 3

2pd},
with probabilities of { 14 , 1

2 , 1
4 } respectively. A differ-

ent random seed is used for each transformation.
Figure 3 illustrates the distribution of the number

18https://en.wikipedia.org/wiki/Leet

of perturbations applied to each sentence as a re-
sult of executing the mix_all transformation on 2
million training sentences from the OSCAR dataset.

Figure 4: Visualisation of UGC phenomena of the
FLORES† devtest by their type and token ratios.
The data point labels indicate TTR ratios. All ratios
are with respect to the standard English text.

All these transformations produce artificial UGC
texts with varying levels of non-standardness. Fig-
ure 4 illustrates the ratios of number of types, num-
ber of tokens and TTR of the FLORES† devtest
texts generated by each transformation with respect
to the standard English text. The perturbations with
the highest and lowest TTR ratios are fing and
leet, respectively. fing also has the highest type
ratio while leet has the highest token ratio. Both
transformations perform character-level substitu-
tions that shatter LASER’s SentencePiece tokeni-
sation. spac also has a high type ratio as a result
of inserting and deleting whitespaces. In theory,
the closer a transformation is to the lower-left cor-
ner of the plot, the more standard-like the UGC
text is. For instance, abr3, cont and week fall
into this category with all three ratios equal to 1.00.
Conversely, the farther the transformation is from
the lower-left corner, the more non-standard it is
(and therefore more challenging for LASER).

B. Comparison of Cosine Distance,
xSIM and xSIM++ across

Languages

The FLORES dataset has n-way parallel texts in
200 languages. We produce LASER embeddings
of the devtest and compute average pairwise co-
sine distance, xSIM and xSIM++ for all 199 xx-
English language pairs. Figure 5 shows the quan-
tiles of the cosine distance, while Figure 6 shows
those of xSIM and xSIM++. The minimum values
(or 0th percentiles) are 0.07, 0% and 7.21% for
cosine distance, xSIM and xSIM++ respectively.

Notably, Figure 6 supports the observation made
by Chen et al. (2023) that the xSIM scores for many
language pairs “quickly saturate at 0%”. Indeed,

https://en.wikipedia.org/wiki/Leet
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UGC type abr1 abr2 abr3 cont dysl fing homo leet slng spac spel week mix_all
LASER 0.15 0.30 0.00 0.10 0.10 0.35 0.11 10.35 0.10 0.36 0.16 0.00 0.38
RoLASER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00** 0.00 0.00 0.00 0.00 0.00**
c-RoLASER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00** 0.00 0.00 0.00 0.00 0.00**

Table 9: xSIM scores for all models on UGC→standard English bitext from each UGC type of FLORES†

devtest data, averaged across 10 data generation seeds. The best score for each type is in bold. **:
p < 0.001, statistical significance with respect to LASER’s scores.

the xSIM value remains at 0 until the 20% quantile
(20th percentile). This means that for the top 20%
language pairs, LASER has a perfect xSIM score
in aligning the sentences. We see that xSIM++ is a
better metric because it is not easy to get a perfect
score. It is therefore deemed more “challenging”.
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Figure 5: Quantiles of average pairwise cosine dis-
tance on FLORES devtest for all 199 xx→English
language pairs.
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Figure 6: Quantiles of xSIM and xSIM++ scores on
FLORES devtest for all 199 xx→English language
pairs.

C. xSIM Scores on Artificial UGC

Table 9 shows the xSIM scores of the three models
on the artificial UGC texts from FLORES† devtest.
Both RoLASER and c-RoLASER get a consistent
score of zero across all UGC types. As it has
already been stated that xSIM is not challenging
enough on FLORES (see Appendix B), these re-
sults are not informative enough to make further
conclusions on their performance, other than that
they improve on LASER’s.
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