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Abstract
Implicit Discourse Relation Recognition (IDRR), which is the task of recognizing the semantic relation between given
text spans that do not contain overt clues, is a long-standing and challenging problem. In particular, the paucity of
training data for some error-prone discourse relations makes the problem even more challenging. To address this
issue, we propose a method of generating synthetic data for IDRR using a large language model. The proposed
method is summarized as two folds: extraction of confusing discourse relation pairs based on false negative rate
and synthesis of data focused on the confusion. The key points of our proposed method are utilizing a confusion
matrix and adopting two-stage prompting to obtain effective synthetic data. According to the proposed method, we
generated synthetic data several times larger than training examples for some error-prone discourse relations and
incorporated it into training. As a result of experiments, we achieved state-of-the-art macro-F1 performance thanks
to the synthetic data without sacrificing micro-F1 performance and demonstrated its positive effects especially on
recognizing some infrequent discourse relations.
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1. Introduction

In order to comprehend the meaning of natural lan-
guage text, it is essential to understand not only
the meanings of individual sentences but also the
semantic relations between them. Such semantic
relations are called discourse relations. Automatic
recognition of discourse relations has been actively
studied due to its applicability to natural language
understanding (Omura and Kurohashi, 2022; Bhar-
gava and Ng, 2022) and various natural language
processing (NLP) tasks (Saito et al., 2019; Tang
et al., 2021).

Penn Discourse Treebank (PDTB) (Prasad et al.,
2008) is one of the representative corpora regard-
ing discourse relations. It has been built by annotat-
ing the Wall Street Journal with discourse relations
between adjacent text spans named arguments.
An example is shown in Figure 1; (hereafter, we
express an argument pair as Arg1 and Arg2.) The
arguments in the example do not contain any dis-
course connectives.1 Such examples are called
implicit discourse relations.

Implicit Discourse Relation Recognition (IDRR)
is a long-standing and challenging problem. Even
large language models (LLMs), which have
achieved unprecedented performance on a vari-
ety of NLP tasks, still cannot solve the problem in
a straightforward manner.2 In addition to the com-

*Current affiliation is Nikkei Inc.
1A word or phrase that indicates certain discourse

relation such as “and”, “but”, “for example”, and so forth.

Arg1 : Maggie Thatcher must be doing something right; 
Arg2 : her political enemies are screaming louder than ever. 
Relation : Contingency.Cause+Belief.Reason+Belief 
Connective : "because" 

Figure 1: Example from PDTB. PDTB defines
at most three levels of hierarchical discourse re-
lations. In the example, Relation is delimited by
periods, and top-, second-, and third-level rela-
tions are “Contingency”, “Cause+Belief”, and “Rea-
son+Belief”, respectively. Note that the higher the
level, the coarser the granularity. In addition, some
discourse connectives are assigned to lexicalize
the relations. Regarding implicit discourse rela-
tions, the annotated connectives are not present in
arguments.

plexity of IDRR itself, i.e., requiring deep reasoning
due to the lack of overt clues, the paucity of train-
ing data for some error-prone discourse relations
makes the problem even more challenging.

A naive solution to the aforementioned problem
is to increase the number of annotated examples.
However, it is not practical due to requiring cautious
annotations by experts. Turning our attention to au-
tomatic generation of training data, synthetic data
generation using language models has achieved

2We investigated the few-shot performance of GPT-
3.5 and GPT-4 in IDRR and confirmed that it is far behind
the fine-tuning performance of much smaller pre-trained
language models, which is described in Section 3.2.
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some success recently (Puri et al., 2020; Yang et al.,
2020; Schick and Schütze, 2021; Liu et al., 2022a).
There is room for exploration of their generative
capabilities to generate argument pairs that have a
given discourse relation, although the low few-shot
performance of LLMs in IDRR is problematic.

In this study, we explore synthetic data genera-
tion for IDRR using an LLM. We first conduct pre-
liminary experiments to confirm the paucity of train-
ing data for some error-prone discourse relations.
Based on the preliminary results, we propose a
method of generating synthetic data for these error-
prone discourse relations using an LLM. Specifi-
cally, it is summarized as two folds: extraction of
confusing discourse relation pairs based on false
negative rate and synthesis of data focused on the
confusion. We demonstrate the performance gain
by incorporating the synthetic data into training.

The proposed method has two key points. First,
we utilize a confusion matrix to obtain effective syn-
thetic data. We address the data scarcity problem
of some error-prone discourse relations by gener-
ating synthetic data based on a confusion matrix.

Second, we devise a method of generating syn-
thetic data. It is probably ineffective to straightfor-
wardly generate synthetic data for IDRR using an
LLM due to the low few-shot performance. We
presume that it is attributed to the number of dis-
course relations. In other words, it is challenging
for an LLM to learn and distinguish numerous dis-
course relations from few-shot examples. On the
other hand, it is relatively easy to learn a single
discourse relation from few-shot examples. Thus,
we decompose the process of generating synthetic
data into two stages so that an LLM is required to
learn only a single discourse relation in each stage.
Further details are described in Section 4.1.

The contributions of this study are summarized
as follows:

• We propose an error-driven method of gener-
ating synthetic data for IDRR using an LLM.

• According to the proposed method, we gener-
ated synthetic data several times larger than
training examples for some error-prone dis-
course relations.

• Thanks to the synthetic data, we achieved
state-of-the-art (SOTA) macro-F1 performance
without sacrificing micro-F1 performance and
demonstrated its positive effects especially on
recognizing some infrequent discourse rela-
tions.3

3The synthetic data and code are available at https:
//github.com/ku-nlp/sdg4idrr.

2. Related Work

2.1. Improving IDRR

As seen in Figure 1, PDTB has two major character-
istics: discourse relations are defined hierarchically
and lexicalized by discourse connectives. Many
previous studies on improving IDRR have exploited
these characteristics.

Utilizing Relation Hierarchy This kind of ap-
proach has been on the rise recently. For instance,
Long and Webber (2022) introduced contrastive
learning and utilized the relation hierarchy to select
hard negatives, assuming it is difficult to classify
discourse relations that have the same higher-level
ones. However, we demonstrate an encoder-only
language model such as RoBERTa (Liu et al., 2019)
is apt to confuse infrequent discourse relations with
frequent ones rather than misclassify discourse re-
lations that have the same higher-level ones (cf.
Section 3.3). Jiang et al. (2023) also developed the
contrastive framework to learn the relation hierarchy
and similarity between examples simultaneously,
but the same can be pointed out. Wu et al. (2022)
showed the effectiveness of learning to generate la-
bels along the relation hierarchy. This method may
suffer error propagation from mispredicted top-level
discourse relations.

Utilizing Discourse Connectives Several stud-
ies have been devoted to learning implicit discourse
relations through discourse connectives for some
time. For instance, Nie et al. (2019) and Kishimoto
et al. (2020) have reported the performance gain
by performing an additional pre-training task to pre-
dict masked discourse connectives. Other studies
such as Xiang et al. (2022) and Zhou et al. (2022)
introduced prompt-based learning and utilized an-
notated discourse connectives as verbalizers. As
implicit discourse relations are mentioned without
discourse connectives, it is also worth considering
approaches not relying on discourse connectives.

Other Approaches Xu et al. (2018) introduced
active learning to obtain argument pairs that con-
tain omittable discourse connectives (Rutherford
and Xue, 2015) for data augmentation. Jiang et al.
(2021) performed joint learning of classification and
generation, aiming to deepen the model’s under-
standing of discourse relations through generating
arguments. To the best of our knowledge, no stud-
ies have been conducted on synthetic data gener-
ation for IDRR using an LLM.

https://github.com/ku-nlp/sdg4idrr
https://github.com/ku-nlp/sdg4idrr
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2.2. Synthetic Data Generation for NLP
tasks

After the advent of pre-trained language models,
an increasing number of studies have attempted
to utilize them for synthetic data generation. For
instance, Schick and Schütze (2021) synthesized
121k sentence pairs for Semantic Textual Similarity
using GPT-2 XL (Radford et al., 2019) and achieved
superior performance with the synthetic data only.
Liu et al. (2022a) incorporated human-in-the-loop
into synthetic data generation for Natural Language
Inference and built a dataset consisting of 108k ex-
amples using GPT-3 (Brown et al., 2020). In addi-
tion, synthetic data generation has been conducted
for other NLP tasks including Question Answer-
ing (Puri et al., 2020), Commonsense Reasoning
(Yang et al., 2020), and so forth. While recent stud-
ies lean toward improving few-shot performance
with synthetic data (Meng et al., 2023; Dai et al.,
2023), we aim to improve fine-tuning performance
of encoder-only language models in IDRR consid-
ering the relatively low few-shot performance of
LLMs.

3. Preliminaries

The proposed method is motivated by preliminary
experimental results. We first report them.

3.1. Task Settings
As there are several variations of preprocessing
and evaluation protocols regarding PDTB (Kim
et al., 2020), we explicate task settings used in
our experiments (Section 3.2, 3.3, and 5).

Version of PDTB PDTB has been updated sev-
eral times over the years. While the previous ver-
sion (PDTB-2) (Prasad et al., 2008) has been con-
ventionally used so far, the latest version (PDTB-3)
(Prasad et al., 2019) has improved in both quantity
and quality of annotations. We adopt PDTB-3 tak-
ing into account that more annotated examples are
available for generating synthetic data.

Label Set Label sets vary by the version of PDTB
and the level of relations to classify. We address the
fine-grained classification of second-level relations
and follow Kim et al. (2020) to define a label set
for the task. Specifically, we formulate IDRR as 14-
way classification using only the labels with more
than 100 examples.

Data Partitioning PDTB consists of 25 sections,
and we need to partition them to build a dataset.
For a fair comparison with previous studies, we
adopt the conventional partition introduced by Ji

Relation Train Synthetic Data Dev Test
Unfiltered Filtered

Sync. 435 2,501 1,286 33 43
Async. 1,007 - - 105 108
Cause 4,475 - - 449 406
Cause+B. 159 940 331 13 15
Purp. 1,092 - - 96 89
Cond. 150 - - 18 15
Conc. 1,164 - - 105 97
Cont. 741 - - 91 63
Conj. 3,586 - - 299 237
Equiv. 254 1,167 771 25 30
Inst. 1,166 - - 118 128
Level. 2,601 - - 274 214
Manner 615 - - 28 53
Sub. 343 - - 32 32

Table 1: Statistics of the PDTB dataset and syn-
thetic data. Regarding multi-labeled examples, we
counted the labels separately. For space limitation,
we abbreviate the name of each discourse relation.
As synthetic data may vary by model, we show the
statistics of the synthetic data generated from the
confusion matrix in Figure 3 as a representative.
The statistics of synthetic data for RoBERTaLARGE
are included in Appendix A.2.

and Eisenstein (2015), where we use sections 2-
20, 0-1, and 21-22 as training, development, and
test splits, respectively. For convenience, we call it
PDTB dataset. The statistics of the PDTB dataset
are organized in Table 1.

Handling of Multi-labeled Examples Regard-
ing multi-labeled examples, we follow a common
practice (Ji and Eisenstein, 2015; Qin et al., 2017).
Specifically, during the training phase, we convert
them into separate examples. During the evalua-
tion phase, a prediction is regarded as correct if it
matches one of the labels.4

3.2. Few-shot Performance of LLMs

Few studies attempted to employ LLMs for IDRR
except Chan et al. (2023), which investigated the
zero-shot performance of GPT-3.5 on PDTB-2. We
also investigated the few-shot performance of GPT-
3.5 and GPT-4 (OpenAI, 2023) on PDTB-3.

4We found there are two implementations of this. Let
us consider the case where a model predicts “A” to an
example with the labels “A” and “B”. One implementation
overwrites the prediction with “A” and “B”, while the other
discards the label “B” of the example. This may cause
discrepancies in the total number of true positives and
labels among studies. In this study, we confirmed the
implementation in a compared method and adopted the
former implementation.
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Given two arguments, please answer the  
most appropriate relation between them  
from the following 14 possible relations :
− Temporal.Synchronous : there is some ... 
…  
− Expansion.Substitution : arguments ...
Here are examples : 
Arg1 : … 
Arg2 : … 
Answer : Temporal.Synchronous 
… 

Please answer the relation between the  
following arguments.
Arg1 : …
Arg2 : …
Answer :

 Instruction 

 Definitions of dis- 
 course relations 

 Demonstrations 

 Test prompt 

Figure 2: Prompt template for few-shot learning in
second-level relation classification on PDTB-3.

Setting Micro-F1 Macro-F1
GPT-3.5 few-shot 23.2 19.0
GPT-4 few-shot 29.4 30.9
RoBERTaBASE (Vanilla) 64.2 57.1

Table 2: Experimental results of few-shot
learning in second-level relation classification on
PDTB-3. The vanilla fine-tuning performance of
RoBERTaBASE is taken from Table 4.

3.2.1. Experimental Settings

As mentioned in Section 3.1, we address the 14-
way classification of second-level relations. Figure
2 illustrates the prompt template for few-shot learn-
ing on the task. We instructed LLMs to generate
one of the labels given definitions of discourse re-
lations and demonstrations.

For the LLMs, we employed the snapshots of
GPT-3.5 and GPT-4 from June 13th, 2023 (a.k.a
“gpt-3.5-turbo-16k-0613” and “gpt-4-0613”). We
retrieved K nearest neighbors of a test example
from training examples for each discourse relation
and used the K × 14 examples as demonstrations
referring to Liu et al. (2022b). We made use of
the RoBERTaLARGE-based supervised SimCSE5

(Gao et al., 2021) for retrieving nearest neighbors
and set K to 8 considering the token limit of the
LLMs. We used the test split of the PDTB dataset
for evaluation and evaluated the model by micro-F1
and macro-F1.

3.2.2. Results

Table 2 shows the few-shot performance of GPT-
3.5 and GPT-4. Despite providing more than 100
examples as demonstrations, the few-shot perfor-

5https://huggingface.co/princeton-nlp/
sup-simcse-roberta-large

Figure 3: Normalized confusion matrix of the
RoBERTaBASE model. We applied row normaliza-
tion to the confusion matrix so that each element
represents sensitivity or false negative rate.

mance is far behind the fine-tuning performance of
the RoBERTaBASE model.

3.3. Confusion Matrix of Encoder Model
In order to identify the propensity for error in a com-
monly used model, we analyzed the confusion ma-
trix.

3.3.1. Experimental Settings

We investigated the confusion matrix of the
RoBERTaBASE model, which has been employed
in most recent studies. We fine-tuned the
RoBERTaBASE pre-trained model6 on the PDTB
dataset and computed a confusion matrix on the
development split. Training details and hyper-
parameters are described later in Section 5.1.2
and 5.1.4, respectively.

3.3.2. Results

We define the degree of confusion by false neg-
ative rate considering the class imbalance as
seen in Table 1. Figure 3 illustrates the normal-
ized confusion matrix of the RoBERTaBASE model.
Several non-diagonal elements indicate high de-
gree of confusion, i.e., much room for improve-
ment. Furthermore, it is observable from Table
3 that RoBERTaBASE is apt to confuse infrequent
discourse relations such as “Cause+Belief” and

6https://huggingface.co/roberta-base

https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
https://huggingface.co/roberta-base
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Ground Truth Prediction
Contingency.Cause+B Contingency.Cause
Temporal.Sync. Expansion.Conj.
Expansion.Equiv. Contingency.Cause
Expansion.Sub. Contingency.Cause
Expansion.Equiv. Comparison.Conc.

Table 3: Top-5 confusing discourse relation pairs in
the RoBERTaBASE model. For space limitation, we
abbreviate the name of each second-level relation.

“Equivalence” with frequent ones rather than mis-
classify discourse relations that have the same
higher-level ones.

4. Synthetic Data Generation for IDRR

Based on the preliminary results, we propose an
error-driven method of generating synthetic data for
improving fine-tuning performance of an encoder-
only language model in IDRR.

4.1. Proposed Method
The proposed method of generating synthetic data
consists of the following three steps (cf. Figure 4)

1. Extract top-k confusing discourse relation
pairs based on false negative rate.

2. For each confusing discourse relation pair
(Rtrue, Rpred), retrieve training examples that
have the relation Rtrue as the source of syn-
thetic data.

3. Synthesize data based on the retrieved exam-
ples using an LLM.

The following paragraphs explicate each step.

STEP1: Extraction of Confusing Discourse Re-
lation Pairs The first step is to extract confusing
discourse relation pairs based on a confusion ma-
trix. As described in Section 3.3, we fine-tune a
model, calculate a confusion matrix on the develop-
ment split, and extract top-k confusing discourse
relation pairs based on false negative rate. We uti-
lize false negative rate as the degree of confusion
to treat infrequent and frequent discourse relations
equally.

STEP2: Retrieval of Training Examples Next,
we prepare the source of synthetic data. We utilize
training examples as the source judging it is difficult
to generate argument pairs that have a given dis-
course relation from scratch. Specifically, for each
confusing discourse relation pair (Rtrue, Rpred), we
retrieve all the training examples that have the rela-
tion Rtrue in preparation for the following synthesis
process.
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0.20.0
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⋮

confuse B with C

A
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based on false negative rate 
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For each confusing discourse relation pair (Rtrue, Rpred), 
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0.3 confuse C with A Arg1: ...
Arg2: ...
Relation: C

confuse C with A

Synthesize data based on the retrieved examples
using an LLM 
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Relation: C

Arg1: ...
Arg2': ...
Relation: CGenerate

Arg2

LLM
Filter out 
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LLM

①

②

③

Figure 4: Overview of the proposed method.

STEP3: Synthesis of Data Then, we synthesize
data focused on resolving the confusion. As men-
tioned in Section 1, we adopt two-stage prompting
to synthesize data (Figure 5). Specifically, we first
instruct an LLM to generate a candidate list of Arg2
given Arg1, original Arg2, and the definition sen-
tence of the relation Rtrue. We synthesize Arg2
considering the unidirectionality of language mod-
els. Figure 6 demonstrates the aforementioned
process using the example in Figure 1. Synthetic
data can be obtained by splitting completion by the
item mark “- ” and combining each split with Arg1
and the label of Rtrue. In the second stage, we ask
an LLM whether each pair of Arg1 and synthetic
Arg2 has the relation Rpred or not. Regarding the
demonstrations for learning the relation Rtrue/Rpred,
we use K nearest neighbors of a source example
referring to Liu et al. (2022b), which are retrieved
from the training examples that have Rtrue/Rpred.

4.2. Generation of Synthetic Data
According to the proposed method, we generated
three synthetic data from top-1, 3, and 5 confusing
discourse relation pairs to examine the effect of k in
later experiments. We fixed the value of K, the num-
ber of nearest neighbors for learning the relation
Rtrue/Rpred, to 8 referring to Min et al. (2022). For
the LLM, we employed GPT-4 (a.k.a “gpt-4-0613”).
Table 1 includes the statistics of the synthetic data
generated from top-3 confusing discourse relation
pairs for RoBERTaBASE as a representative. The
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Given two arguments, the relation "Contingency.Cause+Belief" is defined as  
"evidence is provided to cause the hearer to believe a claim". 
Here are examples that have the relation "Contingency.Cause+Belief"

 
: 

< demonstrations > 
Please write down arguments that have the relation "Contingency.Cause+Belief" 
to the argument "Maggie Thatcher must be doing something right;". 

Here list several answers: 
− her political enemies are screaming louder than ever. 
− the economy is thriving under her leadership. 
− her approval ratings are consistently high. completion 

 Maggie Thatcher must be doing something right; − the economy is thriving under her leadership. 
 Maggie Thatcher must be doing something right; − her approval ratings are consistently high. 

( label = Contingency.Cause+Belief )

Figure 6: Illustration of the first stage of synthetic data generation using the example in Figure 1.
Definitions of discourse relations are taken from the PDTB-3 annotation manual.7

First stage� �
Given two arguments, the relation Rtrue is defined
as
⟨ the definition of Rtrue ⟩
Here are examples that have the relation Rtrue:
⟨ demonstrations ⟩
Please write down arguments that have the relation
Rtrue to the argument ⟨ Arg1 ⟩.

Here list several answers:
- ⟨ Arg2 ⟩
-� �
Second stage� �
Given two arguments, the relation Rpred is defined
as
⟨ the definition of Rpred ⟩
Here are examples that have the relation Rpred:
⟨ demonstrations ⟩
Please answer whether the two arguments
⟨ pair of Arg1 and synthetic Arg2 ⟩ have the relation
Rpred or not. An answer must end with “Yes.” or
“No.”.� �

Figure 5: Prompt templates for an LLM. We adopt
two-stage prompting to generate synthetic data.
Rtrue and Rpred represent ground-truth and mispre-
dicted discourse relations, respectively.

total cost of generating and filtering synthetic data
was about $390.

Analysis of Synthetic Data In order to analyze
the quality of synthetic data quantitatively, we sam-
pled 30 examples each for the “Cause+Belief”,
“Synchronous”, and “Equivalence” relations and
manually verified them. We selected these three re-

7https://catalog.ldc.upenn.edu/docs/
LDC2019T05/PDTB3-Annotation-Manual.pdf

Arg1 : A half-hour later, the woman is smiling and chatting; 
Original Arg2 : the demon seems to have gone. 
Synthetic Arg2 : her mood has significantly improved. 
Relation : Contingency.Cause+Belief 

Arg1 : ensure the same flow of resources 
Original Arg2 : and reduce the current deficit. 
Synthetic Arg2 : while maintaining the current workforce. 
Relation : Temporal.Synchronous 

Arg1 : It‘s a nervous market. 
Original Arg2 : It was all over the place. 
Synthetic Arg2 : The market is highly unpredictable. 
Relation : Expansion.Equivalence

Figure 7: Examples of synthetic data.

lations because they were top confusing discourse
relations in all the experimental settings we tested.
As a result of manual verification, 20, 20, and 23
examples of the “Cause+Belief”, “Synchronous”,
and “Equivalence” relations were judged as valid,
which appears to be acceptable as synthetic data.

We also analyzed the examples for each relation
qualitatively. “Cause+Belief” is required that one
argument expresses some belief, and the other pro-
vides its justification. As is the example in Table 7,
synthetic Arg2s are sometimes factual and incon-
sistent with original Arg2 when it expresses some
belief. One of the possible remedies is to utilize
third-level relation to select examples whose Arg1
expresses some belief.

Regarding “Synchronous”, we observed GPT-4
was apt to include discourse connectives such as
“while” to establish the relation. Although such ex-
amples are valid, this may cause shortcut learning
(Geirhos et al., 2020), which raises the need for
refining instructions.

Synthetic data of “Equivalence” was often judged
as valid. One of the possible reasons is that the
relation is regarded as a kind of paraphrasing and
is relatively easy to understand for the LLM.

https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf
https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf
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5. Experiments

We conducted experiments to examine the effec-
tiveness of incorporating synthetic data into train-
ing.

5.1. Experimental Settings

5.1.1. Data and Model

We used the PDTB dataset and synthetic data gen-
erated by the proposed method (cf. Section 3.1,
4.2). These statistics are organized in Table 1.

We evaluated the performance of the RoBERTa
(Liu et al., 2019) model to compare with previous
studies. We employed the base-6 and large-size8

pre-trained models hosted on Hugging Face Hub.

5.1.2. Training Details

During the training phase, we minimize the stan-
dard softmax cross-entropy loss. When incorpo-
rating synthetic data into training, we minimize the
weighted sum of the losses of training examples
and synthetic data, which is expressed by the fol-
lowing equations.

H =
1

N

N∑
i=1

− log
efy(x)∑

y′∈[Y ] e
fy′ (x)

L = Htraining + λ×Hsynthetic

where N is a batch size, Y is a set of classes, fy(x)
is the logit for the class y, and λ is the weight for
synthetic data.

During the evaluation phase, we evaluate the
model by micro-F1 and macro-F1. We measure the
performance on the development split per epoch
and adopt the model parameters with the best dev
performance (macro-F1) for evaluation on the test
split.

5.1.3. Compared Methods

We adopted the following methods for comparison.

Vanilla In this setting, we merely fine-tune models
without synthetic data.

Logit Adjustment (Menon et al., 2021) Based
on the results of Table 3, we speculate the syn-
thetic data generated by the proposed method is
effective in learning long-tail discourse relations.
Thus, we compare logit adjustment with our pro-
posed method as a baseline of learning long-tail
classes. This method adjusts logits when comput-
ing the standard softmax cross-entropy loss so that

8https://huggingface.co/roberta-large

the rarer the class, the greater the loss. The above
is expressed by the following equation.

H =
1

N

N∑
i=1

− log
efy(x)+τ log πy∑

y′∈[Y ] e
fy′ (x)+τ log πy′

where πy is an estimate of the class prior and τ is
the temperature. We used the class frequencies
on the training examples as πy and set τ to 1.0
referring to the authors’ report.

Long and Webber (2022) This is the state-of-the-
art (SOTA) method in macro-F1 performance on
the same task settings as ours. As mentioned in
Section 2.1, they achieved superior performance
by introducing contrastive learning. They also used
additional training examples generated by inserting
annotated discourse connectives between argu-
ments.

Liu and Strube (2023) This is the state-of-the-
art (SOTA) method in micro-F1 performance on
the same task settings as ours. They achieved
superior performance by introducing joint learning
of generating discourse connectives between given
argument pairs and predicting discourse relations
based on them.

Jiang et al. (2023) We compare this as one of the
methods using RoBERTaLARGE. As mentioned in
Section 2.1, they introduced the contrastive frame-
work.

5.1.4. Hyper-Parameters

Regarding baselines, we performed grid search
of learning rate from {5e-6, 1e-5, 2e-5} and se-
lected the one that achieved the best macro-F1
on the development split. When incorporating syn-
thetic data into training, we used the same hyper-
parameters but performed grid search of λ, the
weight for synthetic data, from {0.5, 0.25}. As we
generated three synthetic data from top-1, 3, and
5 confusing discourse relation pairs, we adopted
the one that achieved the best macro-F1 on the
development split. Specifically, we used the syn-
thetic data generated from top-3 and top-5 confus-
ing discourse relation pairs for RoBERTaBASE and
RoBERTaLARGE, respectively. The specific values
of hyper-parameters are included in A.3.

5.2. Results
Table 4 shows the experimental results of (second-
level) IDRR on the PDTB dataset. As the synthetic
data focuses on learning infrequent discourse rela-
tions, it might cause the forgetting of frequent dis-
course relations and deteriorate micro-F1. Despite

https://huggingface.co/roberta-large
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Model Setting Micro-F1 Macro-F1
GPT-3.5 few-shot 23.2 19.0
GPT-4 few-shot 29.4 30.9

RoBERTaBASE

Vanilla 64.2±1.2 57.1±0.4

Logit Adjustment (Menon et al., 2021) 62.1±1.5 59.0±0.5

Long and Webber (2022) 64.7 57.6

Liu and Strube (2023) 65.5†
±0.4 54.9†±0.8

Ours
+synthetic data (unfiltered) 64.5±0.8 58.4±1.2

+synthetic data (filtered) 64.8±1.0 59.1±1.5

(64.0±0.8) (57.5±1.6)

RoBERTaLARGE

Vanilla 67.7±0.5 60.9±1.6

Logit Adjustment (Menon et al., 2021) 64.8±0.7 61.4±0.6

Jiang et al. (2023) 66.4† 60.1†

Ours
+synthetic data (unfiltered) 67.4±0.6 62.2±1.2

+synthetic data (filtered) 68.8±0.4 62.4±1.5

(68.1±0.3) (61.6±0.8)

Table 4: Experimental results of (second-level) IDRR on PDTB-3. The scores are the mean and standard
deviation over three runs with different random seeds. The difference between “+synthetic data (unfiltered)”
and “+synthetic data (filtered)” is whether or not to apply the filtering by an LLM in the second stage. †

denotes that the handling of multi-labeled examples might be different from ours (cf. Section 3.1). For
these studies, we also evaluated our model in their manner and reported the results in parentheses.

Relation RoBERTaBASE RoBERTaLARGE
VNL Ours L&W VNL Ours

Sync. 34.4 32.6♠ 41.4 35.5 38.1♠

Async. 66.8 68.0 66.4 72.9 76.0
Cause 69.3 69.8 71.4 74.1 74.8

Cause+B. 1.7 11.8♠ 0.0 5.0 5.1♠

Purp. 94.8 93.6 96.1 95.8 95.2
Cond. 70.2 73.8 74.1 75.5 78.0
Conc. 60.1 61.7 60.1 63.3 63.9
Cont. 49.0 49.1 56.9 56.7 56.4
Conj. 60.6 60.0 61.7 62.9 65.0

Equiv. 21.6 34.1♠ 11.4 25.3 31.4♠

Inst. 69.8 72.7 69.8 73.1 73.2
Level. 57.0 57.0 55.3 58.9 59.4

Manner 80.3 80.5 78.4 80.9 83.1♠

Sub. 63.7 62.3 63.8 72.7 73.9

Table 5: Experimental results for each discourse
relation. VNL and L&W represent Vanilla and Long
and Webber (2022), respectively. “Ours” corre-
sponds to the “+synthetic data (filtered)” setting. ♠

denotes that the model was trained with synthetic
data of the relation.

the concern, we achieved the SOTA macro-F1 per-
formance without sacrificing micro-F1 performance
in both RoBERTaBASE and RoBERTaLARGE thanks
to the synthetic data.

Detailed results are organized in Table 5. Re-
garding RoBERTaBASE, the synthetic data is actu-
ally effective in learning infrequent discourse re-
lations such as the “Cause+Belief” and “Equiva-

lence” relations. On the other hand, it does not
work on the “Synchronous” relation. One of the
possible reasons is that the synthetic data may
contain some phrases that induce shortcut learn-
ing as discussed in Section 4.2. The above problem
can be alleviated by refining the instruction so as
not to include discourse connectives. Regarding
RoBERTaLARGE, the synthetic data is generally ef-
fective in learning the target discourse relations ex-
cept “Cause+Belief”. As the size of synthetic data
for “Cause+Belief” is relatively small, the model may
not have been adequately trained on the relation.

Comparing “+synthetic data (filtered)” with “+syn-
thetic data (unfiltered)”, we can see the solid per-
formance gain thanks to the filtering. We presume
some removed examples are harmful to learning
discourse relations even though they are not always
noisy.

5.3. Discussion
Effects of Top-k Table 6 shows the change in
performance of RoBERTaBASE when varying how
many confusing discourse relation pairs to extract.
While synthetic data is generally effective in improv-
ing macro-F1, learning to resolve more confusion
does not necessarily lead to overall performance
improvement, which suggests the importance of
selecting which confusion to focus on.

Prompting from Discourse Connectives In-
spired by previous studies, we attempted to gener-
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k Micro-F1 Macro-F1
0 64.2±1.2 57.1±0.4

1 63.6±0.8 57.5±0.9

3 64.8±1.0 59.1±1.5

5 63.9±1.0 58.4±1.6

Table 6: Correspondence between the number of
confusing discourse relation pairs to extract and
the performance of RoBERTaBASE.

ate synthetic data utilizing discourse connectives to
examine their effectiveness. Let us explain based
on Figure 6. We added an annotated discourse
connective to the beginning of original Arg2 (i.e.
“her political enemies ... ” → “because her political
enemies ... ”) and made an LLM generate text that
starts with the connective (i.e. “– {completion}” →
“– because {completion}”). We incorporated the
synthetic data generated by the above method and
evaluated the model performance.

As a result, the performance of RoBERTaBASE
was micro-F1 of 64.2 and macro-F1 of 58.7. The
effects of discourse connectives in this setting are
limited.

Single-Stage Augmentation Strategy We gen-
erated synthetic data by simply instructing an LLM
to paraphrase argument pairs and investigated the
performance gain by the synthetic data to com-
pare with our strategy. In Figure 5, we modified the
instruction to “Please write down paraphrases of
<pair of Arg1 and Arg2> keeping the relation Rtrue”
and obtained paraphrases of argument pairs. We
incorporated the synthetic data and evaluated the
model performance.

As a result, the performance of RoBERTaBASE
was micro-F1 of 64.4 and macro-F1 of 57.3, which
implies the importance of generating diverse Arg2.

6. Conclusions

We proposed a method of generating synthetic data
for IDRR using an LLM, which consists of two main
steps: extraction of confusing discourse relation
pairs based on false negative rate and synthesis
of data focused on the confusion. According to the
proposed method, we generated synthetic data ef-
fective in IDRR while addressing the complexity of
IDRR by two-stage prompting. Thanks to the syn-
thetic data, we achieved the SOTA macro-F1 per-
formance without sacrificing micro-F1 performance
and demonstrated its effectiveness especially in
recognizing some infrequent discourse relations.

We will explore another prompting strategy to
improve the quality of synthetic data. In addition,
we would like to consider a method to generate
synthetic data from scratch.

7. Limitations

In this study, we only used GPT-4 for synthetic data
generation and did not focus on whether our pro-
posed method also works using smaller or larger
language models. We should not suggest the pos-
sibility that other language models could be used.
In addition, there is no denying that GPT-4 might
be trained on data regarding IDRR, leading to the
effectiveness of our proposed method. However,
we speculate this issue is unlikely because the few-
shot performance of GPT-4 on IDRR is low.

We are also aware that the prompting strategy
is underexplored. We do not claim our proposed
method is optimal but position it as one successful
example.
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A. Appendix

A.1. Definitions of Discourse Relations
Table 7 shows the definitions of discourse relations
used in the experiments.

A.2. Statistics of Synthetic Data for
RoBERTaLARGE

Table 8 organizes the statistics of synthetic data for
RoBERTaLARGE.

A.3. Hyperparameters
Hyper-parameters used in the experiments are or-
ganized in Table 9.

A.4. Top-Level Relation Classification
Performance

As we can also calculate the performance in
top-level relation classification from the results of
second-level relation classification, we report it in
Table 11 for reference.

Relation Train Synthetic Data Dev Test
Unfiltered Filtered

Sync. 435 2,501 1,286 33 43
Async. 1,007 - - 105 108
Cause 4,475 - - 449 406
Cause+B. 159 940 331 13 15
Purp. 1,092 - - 96 89
Cond. 150 - - 18 15
Conc. 1,164 - - 105 97
Cont. 741 - - 91 63
Conj. 3,586 - - 299 237
Equiv. 254 1,167 203 25 30
Inst. 1,166 - - 118 128
Level. 2,601 - - 274 214
Manner 615 3,948 3,666 28 53
Sub. 343 - - 32 32

Table 8: Statistics of the synthetic data for
RoBERTaLARGE.

Name Value
RoBERTaBASE RoBERTaLARGE

Epoch 20
Batch size 32
Max sequence length 128
Optimizer AdamW
Learning rate 2e-5 1e-5
Weight decay 0.01

Scheduler Linear decay with
linear warmup

Warmup proportion 0.1
Seed {0, 1, 2}
λ 0.25

Table 9: Hyper-parameters for IDRR on PDTB-3.
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Relation Definition

Temporal.Synchronous there is some degree of temporal overlap between the events described by
the arguments

Temporal.Asynchronous one event is described as preceding the other

Contingency.Cause the situations described in the arguments are causally influenced but are not
in a conditional relation

Contingency.Cause+Belief evidence is provided to cause the hearer to believe a claim

Contingency.Purpose one argument presents an action that an agent undertakes with the purpose
of the goal conveyed by the other argument being achieved

Contingency.Condition one argument presents a situation as unrealized (the antecedent), which (when
realized) would lead to the situation described by the other argument

Comparison.Concession an expected causal relation is cancelled or denied by the situation described
in one of the arguments

Comparison.Contrast at least two differences between the arguments are highlighted

Expansion.Conjunction both arguments, which don’t directly relate to each other, bear the same relation
to some other situation evoked in the discourse

Expansion.Equivalence both arguments are taken to describe the same situation, but from different
perspectives

Expansion.Instantiation one argument describes a situation as holding in a set of circumstances, while
the other argument describes one or more of those circumstances

Expansion.Level-of-detail both arguments describe the same situation, but in less or more detail

Expansion.Manner the situation described by one argument presents the manner in which the
situation described by other argument has happened or been done

Expansion.Substituion arguments are presented as exclusive alternatives, with one being ruled out

Table 7: Definitions of discourse relations. They are basically taken from the PDTB-3 anntotation manual,
but we slightly modify that of Expansion.Conjunction.

Model Setting Micro-F1 Macro-F1
GPT-3.5 few-shot 41.5 36.5
GPT-4 few-shot 42.3 42.2

RoBERTaBASE

Vanilla 74.8±0.6 69.9±0.8

Ours +synthetic data (unfiltered) 75.1±0.3 70.0±0.5

+synthetic data (filtered) 74.7±0.2 70.0±0.2

RoBERTaLARGE

Vanilla 78.0±1.1 74.0±1.2

Ours +synthetic data (unfiltered) 77.5±0.6 73.6±0.4

+synthetic data (filtered) 78.6±0.4 74.5±0.5

Table 11: The performance in top-level relation classification calculated from the results of second-level
relation classification. The scores are the mean and standard deviation over three runs with different
random seeds. Note that the performance is optimized for second-level relation classification, not top-level,
and there is probably room for improvement.
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