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Abstract
This work addresses the challenge of extracting job tasks from German job postings and mapping them to the
fine-grained work activities classification in the O*NET labor market ontology. By utilizing ontological data with a
Multiple Negatives Ranking loss and integrating a modest volume of labeled job advertisement data into the training
process, our top configuration achieved a notable precision of 70% for the best mapping on the test set, representing
a substantial improvement compared to the 33% baseline delivered by a general-domain SBERT. In our experiments
the following factors proved to be most effective for improving SBERT models: First, the incorporation of subspan
markup, both during training and inference, supports accurate classification, by streamlining varied job ad task formats
with structured, uniform ontological work activities. Second, the inclusion of additional occupational information from
O*NET into training supported learning by contextualizing hierarchical ontological relationships. Third, the most
significant performance improvement was achieved by updating SBERT models with labeled job ad data specifically
addressing challenging cases encountered during pre-fine-tuning, effectively bridging the semantic gap between
O*NET and job ad data.
Keywords: Text Mining, Work Task Classification, Domain Adaptation

1. Introduction

What people do at work, and the evolution of work
activities between and within professions over time
are of great interest to social scientists and labor
market stakeholders. Job advertisements serve as
an excellent data source for addressing these ques-
tions as beyond specifying a job’s profession or
industry, they provide detailed descriptions of tasks
and responsibilities associated with specific posi-
tions at a given time. Our research aims to facilitate
investigations into these questions by normalizing
free text formulations to ontological categories.

Our first objective is to extract information regard-
ing individual job tasks from job advertisements.
Through standardization of the extracted job tasks
and their connectivity to other data sources, we
seek to enable statistical analyses and compara-
tive research. Our second objective is thus to pro-
vide a method for mapping extracted job tasks to
established labor market ontologies or taxonomies.

This paper focuses on German-language job
ads from the Swiss Job Market Monitor (Buch-
mann et al., 2023), a longitudinal and represen-
tative research dataset from Switzerland. We se-
lect O*NET1 as mapping ontology for its unique
hierarchical classification of work activities, ranging
from fine-grained (about 2,000 classes) to more
aggregated categories (37). O*NET also offers in-
sights into task-occupation associations, along with
a mapping of tasks to work activities, making it the
primary ontology of its kind.

1https://www.onetonline.org/

To achieve our first goal, the extraction of job
tasks from job postings, we must deal with the di-
verse ways in which job tasks are expressed. We
develop a framework for the recognition of job tasks,
job titles, and the relevant components of tasks,
such as work activities, objects, scope of responsi-
bility, and contextual information. We aim to imple-
ment task recognizers that extract task text spans
and standardize the various ways job tasks and du-
ties are presented in job ads by further segmenting
and classifying their components.

To reach our second goal, ontology mapping, we
train sentence-level semantic vector representation
models, facilitating the semantic retrieval of O*NET
work activities corresponding to job ad tasks. To
this end, we harness ontological data with a lim-
ited amount of labeled job ad data, ensuring op-
timal vector representations for semantic search.
Furthermore, we employ subspan markup within
the training and inference processes to incorporate
structural information related to work tasks.

Our contributions in this paper encompass the
definition of job tasks and their internal components,
the training of domain-specific language represen-
tation models at the sentence level for semantic
similarity retrieval, and the creation of a gold stan-
dard dataset for evaluating task extraction from
German-language job ads and their mapping to
O*NET.2

In the following, we discuss related work in Sec-
tion 2 and describe our experimental data and

2Data created for this paper is available via DOI
10.5281/zenodo.10868835

https://www.onetonline.org/
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pipeline in Section 3. The approaches and exper-
iments for task span extraction are explained in
Section 4, and our techniques and experiments for
mapping job tasks to O*NET are presented in Sec-
tion 5. Our key findings are summarized in Section
6.

2. Related Work

Information extraction from job ads, with a primary
focus on occupations and skill requirements, has
long been explored in social science, however often
on proprietary data with not fully documented meth-
ods (Atalay et al., 2020; Deming and Kahn, 2018;
Acemoglu et al., 2022). More recent approaches
involve distant supervision using ontologies like
ESCO (Zhang et al., 2022; Decorte et al., 2022).
Notably, Zhang et al. (2023) employ ESCO to pre-
train a multilingual language model. They introduce
a relation prediction objective, alongside the stan-
dard Masked Language Modeling objective, to dis-
tinguish between hierarchically related, otherwise
related, and unrelated ontological concepts. This
approach yields state-of-the-art results in various
sequence labeling and classification problems.

Decorte et al. (2023) aim to detect skills and as-
sociate them with an ontology through fine-grained
multi-label classification. They create a synthetic
training dataset by obtaining example sentences
from job ads for specific ontology concepts query-
ing large language models. They then learn se-
mantic vector representations by combining these
examples with concept labels, employing a Multiple
Negatives Ranking (MNR) loss.

In our previous work, we approach fine-grained
skill classification similarly to Decorte et al. (2023),
leveraging ontology data with MNR, but employ fine-
grained extractors for skill components and utilize
such structural data alongside contextual sentence
representations, in contrast to Decorte’s focus on
entire sentences (Gnehm et al., 2022).

3. Experimental Data and Pipeline

SJMM, the Swiss Job Market Monitor3, is a mul-
tilingual, longitudinal, and representative research
dataset of job ads from Switzerland. In our experi-
ments, we focus on German-speaking job ads from
1990 onwards (n=480k ads).

O*NET, the Occupational Information Network,
is an online database that offers access to an ex-
tensive collection of information, including tasks,
work activities, or skills related to more than 900
distinct occupations spanning the entire U.S. econ-
omy. For our research, of primary interest is the
available classification of over 18,000 Work Tasks

3Available under https://www.swissubase.ch

Figure 1: Job ad task mapping pipeline. All SBERT
models are evaluated on job ad dev or test data
(not shown here).

into a hierarchical structure of Work Activities. This
taxonomy comprises 37 General Work Activities
(GWA), 332 Intermediate Work Activities (IWA), and
over 2,000 Detailed Work Activities (DWA). Most
tasks (78.5%) are assigned to a single DWA, but
18.3% are connected to two DWAs and 3.2% to
three to five DWAs. For instance, the Task “Assign
schedules to work crews” is assigned to the DWA
“Plan employee work schedules”, as well as to the
DWA “Assign duties or work schedules to employ-
ees”. Most GWAs encompass up to 500 tasks, but
there is one GWA (“Handling and Moving Objects”),
comprising around 3,000 tasks. Also relevant to
our research is the connection between the 900
occupation classes and their typical tasks.

Pipeline: We undertake the following key steps
to enable a mapping from the SJMM job ad tasks
to the O*NET work activities (see Figure 1): As a
preprocessing, O*NET data is machine-translated
from English to German. Then, both datasets un-
dergo a two-step span extraction, to segment single
work task spans, and to identify within them specific
subspans, such as work objects or responsibility
roles (see Section 4). Next, we undertake several
steps to adapt semantic vector representations
for the similarity-based retrieval of O*NET activi-
ties for job ad task spans (outlined in Section 5).
We begin with continued masked language model-
ing (MLM) of transformer-based language models,
utilizing both job ad and ontology task spans. Sub-
sequently, we pre-fine-tune sentence-level repre-
sentations (SBERT) on ontology data, mimicking
the task of retrieving O*NET work activities for job
ad tasks by learning similarities between O*NET

https://www.swissubase.ch
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work activities and ontological tasks (Section 5.1.1).
We then apply and evaluate these initial models for
retrieving O*NET work activities for job ad tasks.
From this post-evaluated data, we identify challeng-
ing cases to create task-specific training data, that
we utilize for task-specific model fine-tuning (see
Section 5.1.2). Finally, we optimize performance
by employing model ensembling.

For the first step of translating monolingual En-
glish O*NET data into German, we utilized DeepL4,
a state-of-the-art commercial translation system.
We verified and, where necessary, corrected trans-
lations for all 37 GWA labels and 332 IWA labels,
as well as shorter text spans, since translation er-
rors often arise from a lack of context. For instance,
“Train personnel” was mistranslated as “Persön-
licher Zug” (German for a personal train or personal
trait), which we corrected to the more appropriate
“Personal schulen”. Random inspections suggest
that task descriptions, on average 100 characters
long, were translated correctly. Consequently, we
have confidence in the quality of our translations
and anticipate minimal impact from any remaining
errors. The experimental settings and results for
the subsequent pipeline steps are outlined in the
following chapters.

4. Task Span Extraction

We apply a two-step process for the extraction and
analysis of task spans in job ads. The first step
identifies text segments that specify a single task.
This is not trivial because task descriptions are
presented in many variants, including lengthy and
elaborate formulations, short dense bullet lists, and
generic or job-specific descriptions. Because oc-
cupation names are a helpful contextualization of
work activities, our task segmentation also recog-
nizes job title mentions in job postings.

Once a task span describing a single work activity
has been identified, it undergoes a second segmen-
tation step where specific subspans are identified
and categorized. Namely: job title ([BJT],[EJT])5;
work activity, work object, work object/activity
as single words ([BOA],[EOA]); responsibility role
([BRR],[ERR]); work context ([BCO],[ECO]).

Examples from O*NET with in-text markup:
“[BOA] Collect evidence [EOA] [BCO] for court
proceedings [ECO]”, “[BRR] Participate [ERR] in
[BOA] personnel decisions [EOA]”. Examples from
translated ads: “[BRR] Ensuring [ERR] [BOA] the
telephone accessibility of the office [EOA] [BCO]
of the teaching association [ECO]”, “[BRR] Con-

4https://www.deepl.com
5Tags in brackets such as [BJT] (begin of job title)

or [EJT] (end of job title) are used when serializing the
structural markup into running text.

Gold Task Spans Model Task Spans
P R F1 P R F1

Job Title 88.9 91.7 90.3 93.1 89.8 91.4
Activity 92.8 92.8 92.8 94.7 93.1 93.9
Object 86.4 85.9 86.2 85.1 89.8 87.4
Object/Act. 85.5 87.5 86.5 87.6 80.7 84.0
Resp. Role 91.9 91.1 91.5 87.6 89.3 88.5
Context 69.9 80.3 74.8 75.5 77.6 76.6
AVERAGE 85.9 88.2 87.0 87.3 86.7 86.9

Table 1: Precision (P), Recall (R), and F1-Score
(F1) of subspan categories on the test set with gold
task spans and model-predicted task spans.

tribute [ERR] to [BOA] in-house continuing educa-
tion [EOA] [BCO] in the area of anesthesia [ECO]”.

4.1. Annotation, Models, and Results
For both extraction steps, we bootstrapped our first
model on a small, manually annotated sample (64
ads for task span extraction, 300 task spans for sub-
span extraction) by training a transformer-based
NER-style tagging model with spaCy6. For the em-
beddings, we used jobGBERT7, a German trans-
former model adapted to job ads by further Masked
Language Modeling pre-training of GBERT (Chan
et al., 2020). Then, we iteratively expanded our
training set in several annotation rounds, by cor-
recting model predictions on new data. To this end,
we used the annotation tool prodigy.8 For the job ad
sampling, we made sure that all broader occupation
classes were represented. This process yielded
a dataset of 1,675 ads for task span extraction
and 7,234 task spans for subspan extraction. Both
datasets were divided into train, dev, and test sets
using an 80-10-10 split. On the test set, our task
extraction evaluated with strict boundary matches
on span level achieved 82.5% F1-Score (83.1%
Precision, 81.8% Recall). We observed that sev-
eral errors were due to boundary mismatches, and
hence, we also evaluated the recognition quality on
the token level, which resulted in 92.3% F1-Score
(93.8% Precision, 90.8% Recall).

For subspan extraction, we created an additional
test set (567 spans) with span boundaries seg-
mented by the span extractor model (instead of
human-annotated gold data) to evaluate its capabil-
ity to deal with imperfectly segmented spans. The
results in Table 1 show that the subspan model is ro-
bust to slightly imperfect segmentations. The over-
all performance of the subspan recognizer has 87%
F1-Score, but the most relevant and frequent sub-
span category Activity reaches 93-94% F1-Score.

6https://spacy.io We used the default settings of the
components spacy-transformers.TransformerModel.v1
and spacy.TransitionBasedParser.v2

7Available on Hugging Face: jobGBERT
8https://prodi.gy/

https://www.deepl.com
https://spacy.io
https://huggingface.co/agne/jobGBERT
https://prodi.gy/
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5. Mapping to O*NET ontology

The goal of this work is to enable a comprehensive
depiction of the duties outlined in a job posting. Par-
ticularly in the context of social science research,
the opportunity to examine the combination of dif-
ferent activities within jobs, and to construct and
explore work activity profiles, is intriguing. Conse-
quently, we aim to map every single extracted job
task span to an ontological work activity.

We focus on the Intermediate Work Activities
(IWA) level of O*NET, comprising 330 distinct
categories. This level provides detailed insights
while maintaining independence from occupation-
specific categorizations. This allows, firstly, for eas-
ier comparison of task profiles across diverse occu-
pations. Secondly, disparities likely exist between
the US and Swiss labor markets regarding the
prevalence of occupations and associated tasks.
However, the high level of abstraction of IWAs (most
IWAs are linked to many different occupations in
O*NET) suggests compatibility across different la-
bor markets.

Our mapping approach resembles an informa-
tion retrieval scenario, where we aim to identify the
most relevant O*NET work activities for a given job
ad task query. To tackle this challenge, we employ
semantic similarity matching, relying on cosine sim-
ilarities between the job ad tasks and the textual
descriptions of the candidate work activity nodes.
While we extract and match individual job ad tasks,
it is worth noting that they may inherently corre-
spond to multiple O*NET activities. This raises
broader questions about the alignment of ontology
with real-world data and the effectiveness of bridg-
ing the gap between ontology and empirical data.
In summary, this mapping can also be viewed as
an unsupervised, fine-grained multi-label classifi-
cation problem.

5.1. Adapting Semantic Vector Spaces
To establish a shared vector space for the two
types of texts, job postings and O*NET descriptions,
where corresponding tasks are closely aligned, we
are experimenting with various approaches to pre-
training and fine-tuning existing large language
models.

MLM: Further pretraining with Masked Language
Modeling (MLM), as introduced by Devlin et al.
(2019), has proven effective in adapting language
models to specialized domains (Gururangan et al.,
2020). We build on the existing transformer-based
model jobGBERT9 that has been pre-trained on
German-speaking job ad texts. We continue MLM
pretraining using the extracted task spans and job
titles from job ads as well as the task descriptions,

9Available on Hugging Face: jobGBERT

work activities, and occupation class titles from
the translated O*NET. We utilize 1.7 million unique
spans extracted from job ads and 22,000 spans
from O*NET. We oversample ontology spans by
factor 5 and resample job ad spans to ensure equal
representation across all years from 1990 to 2022.
In total, our training data comprises 2 million spans.
Detailed training parameters are provided in the
appendix. This step adapts the language model
specifically to our in-domain text snippets that ex-
press work activities.

MNR: Reimers and Gurevych (2019) have shown
that MLM-trained BERT embeddings are not suit-
able for semantic similarity comparisons of sen-
tences and suggested several fine-tuning tasks for
improving the vector space of so-called Sentence-
BERT models (SBERT). We employ Multiple Neg-
atives Ranking (MNR) loss to train domain-specific
SBERT models for improved semantic similarity
lookup. For our SBERT models, Siamese networks
are trained on sentence pairs: Every positive pair
(with a semantically related sentence) is contrasted
to several negative pairs (unrelated sentences),
and the model learns to assign a higher similar-
ity score to positive pairs. The negative pairs are
by default sampled randomly from the same batch,
or specifically selected as challenge pairs resem-
bling positive cases (hard negatives, indicated with
HN in model acronyms).

5.1.1. Pairing O*NET Descriptions

In MNR training, we first exploit the available onto-
logical data to pre-fine-tune SBERT models. While
labeled data for our end task – determining ontolog-
ical work activities (IWAs) for tasks in job positing
– is unavailable, we leverage existing ontological
data to simulate a very similar task, assuming it
enables highly effective pre-fine-tuning. We utilize
hierarchical relationships in O*NET and incorporate
occupational information to create the necessary
positive pairs of related or similar sentences for
MNR training (and use in-batch sampling to gen-
erate dissimilar pairs). We experiment with three
different settings of how to utilize the O*NET data.

In the T2Act (task to activity pairing) setting, we
pair O*NET tasks with their respective work ac-
tivities and lower-level work activity classes with
higher-level ones (DWA to IWA, DWA to GWA, and
IWA to GWA). This results in 88,680 pairs in total.

Additionally, we combine occupation-associated
work task information in two ways:

First, inspired by the language used in job adver-
tisements, we incorporate occupation classes as
context for work tasks when combining them with
work activities, TasOcc2Act (task as done in occu-
pation to activity pairing). This serves the purpose
of disambiguating tasks. For example, “keeping
records as a medical secretary” is positively paired

https://huggingface.co/agne/jobGBERT
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Training Data Setting Examples

T2Act s1: Monitor permit requirements for updates.
s2: Monitor external affairs, trends, or events.

TasOcc2Act s1: Order drugs or devices necessary for study completion as Clinical
Research Coordinator.
s2: Purchase materials, equipment, or other resources.

TasOcc2ActMU
s1: [BOA] Order drugs or devices [EOA] [BCO] necessary for study
completion [ECO] as Clinical Research Coordinator.
s2: [BOA] Purchase materials, equipment, or other resources. [EOA]

TorOcc2Act s1: Industrial Operations Manager
s2: Monitor external affairs, trends, or events.

ad spans s1: Office work s2: Perform administrative or clerical activities.

ad spans, HN s1: Caring for our residents s2: Assist individuals with special needs.
HN: Care for plants or animals.

Table 2: MNR examples for different training data settings. If not specified otherwise (HN), random
sampling of negatives is used (not shown here). Examples with markup provided in setting TasOcc2ActMU .

with “preparing medical documents”, while “keeping
records as an accountant” is paired with “prepar-
ing financial documents”. This approach not only
disambiguates but also augments our training data
because tasks related to several occupations lead
to 332k additional pairs.

Second, we combine occupations with work ac-
tivities of their respective tasks TorOcc2Act, (oc-
cupation to activity pairing, next to task to activity
pairing) bringing occupational classes closer to the
activities they perform in the semantic vector space.
For instance, “Medical secretary” is paired with
“preparing medical documents”. Lower-level work
activities in the hierarchy are occupation-specific,
whereas higher-level activities become progres-
sively more abstract and occupation-independent.
Consequently, we associate occupations only with
activities up to the IWA level, which leads to a total
of 213k pairs.

Since the amount of data differs between the dif-
ferent settings, for comparability we train in all three
settings for the same number of steps (138,550),
which corresponds to 50 epochs for setting T2Act,
roughly 10 epochs for setting TasOcc2Act, and 25
epochs for setting TorOccc2Act. Detailed training
parameters are provided in the appendix.

5.1.2. Pairing Job Ad Spans with O*NET

An additional step in MNR training is then task-
specific fine-tuning10: We create training data
specific to our mapping problem by using pre-fine-
tuned models on our target data (job ad task spans)
and evaluate the IWA suggestions provided. Dur-
ing this phase, we evaluate roughly 8k pairs by
selecting a) very generic or frequent job ad terms;
b) representative cluster terms; c) low-similarity

10Task refers here to the machine learning task of our
model, not job tasks.

terms; and d) terms closely associated with IWAs.
By including both generic terms and low-similarity
terms, we aim to include especially difficult cases
in our data. We use this evaluation data as training
data to update pre-fine-tuned models in two ways:
We utilize the positively evaluated candidates as
positive pairs for training, essentially reinforcing
the model. These positive pairs are combined with
random negative samples in the same batch (in
setting + Ads). Alternatively, we also incorporate
negatively evaluated candidates, which, since dis-
playing high similarities, represent hard negatives
(in setting + AdsHN). For these fine-tuning experi-
ments, we apply the same training parameters as
above but, due to the smaller amount of training
data, limit the training to 10 epochs.

5.2. Subspan Markup
We explore the influence of subspan markup, as
detailed in Section 4. Specifically, we mark the
start and end of subspans for Responsibility Roles
([BRR], [ERR]), Context ([BCO], [ECO]), and a
combination of work activities and objects ([BOA],
[EOA])11, both in SJMM and O*NET data. For in-
stance, the term “supporting” has a different mean-
ing when used in the context of a responsibility
role (e.g., “support our team in preparing reports”)
compared to its meaning as the core element of a
work task (e.g., “supporting students with learning
difficulties”). To assess potential benefit, we insert
subspan markup tags into span texts and include
them into the vocabulary for the LM and SBERT
model tokenizers, too. This way, we ensure that
embeddings are learned for each tag during MLM
training and can be accessed during MNR training
and at inference time. Table 2 provides examples

11Initial experiments incorporating different markup for
every subspan type did not yield better results.
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Query Example
span only participate in reviews
span onlyMU [BOA] participate in reviews

[EOA]
span ±1 span develop QA instructions,

participate in reviews, mon-
itor audit measures

span ±1 spanMU develop QA instructions,
[BOA] participate in reviews
[EOA], monitor audit mea-
sures

span + job title participate in reviews as
quality manager projects

span + job titleMU [BOA] participate in reviews
[EOA] as quality manager
projects

Table 3: Examples of query configurations, target
span in italic (examples translated from German to
English).

of MNR training data processed in this manner.
In general, we create two versions for each train-
ing data set presented above: one with plain text
(e.g., T2Act) and one with subspan markup (e.g.,
T2ActMU ).

5.3. Query configuration
Individual job opening task spans can occasionally
lack specificity or context. In such cases, the sur-
rounding context, either from adjacent tasks or the
job title, becomes crucial for a clear understanding.
Therefore, we introduce multiple lookup configu-
rations for evaluation. First, we include only the
target span in the query. Second, we concatenate
the target span with one adjacent task span to the
left and one to the right, if available, separated by a
comma. Third, we query the span in the form “task
span as job title”, closely resembling the training
setting TasOcc2Act.

Models trained with markup are queried with
markup as well. When there is contextual infor-
mation surrounding the target span, we add the
markup exclusively to the target span to highlight
the specific area of interest. For a comprehensive il-
lustration of our three query formulations, see Table
3.

5.4. Evaluation and Experiments
Evaluation Data: We devised a gold standard
dataset consisting of 59 randomly sampled ads en-
compassing 312 task spans to assess our ontology
mapping approaches. On average, each job adver-
tisement in our evaluation dataset contains 5.3 task
spans. For every single span, we collected the top
three IWA mapping suggestions by various models

and query settings, which human annotators then
rated as 1 (highly appropriate), 0.5 (acceptable), or
0 (incorrect). To avoid bias towards specific models,
we pooled the suggestions by different models and
settings and presented them as a unified set for
annotation. In total, about 8,900 IWA suggestions
were annotated for the 312 task spans. Including
the job title and neighboring tasks from the adver-
tisement was crucial for providing contextual clues
to the annotators, ensuring a reliable evaluation,
particularly for shorter, ambiguous, or generic tasks
(see Table 4).

A single annotator evaluated all 8k suggestions.
Every span had at least one suggestion rated as ac-
ceptable (0.5). Over 98% of spans received at least
one perfect suggestion. However, only 66% of the
spans received three suggestions scoring a perfect
1. This dataset was then divided into a develop-
ment set (30 ads with 169 spans) and a test set (29
ads with 143 spans) for further experimentation.

To measure inter-annotator agreement (IAA),
four annotators independently evaluated a random
subset of 10 spans, each with 10 IWA suggestions.
The resulting Krippendorff’s Alpha of 0.708 indi-
cates satisfactory agreement among annotators
but also reflects the inherent complexity of the map-
ping.

Experiments I: First, we assess the different ap-
proaches for learning a suitable vector space, in
particular the various MNR pre-fine-tuning settings
and the potential benefit of incorporating task sub-
span markup into training and inference. We also
evaluate the impact of different contextualizations
of queries. Performance metrics are measured
on the development set and compared to a base-
line performance achieved with a general domain
SBERT model for German12.

Experiments II: Second, we measure the effect
of task-specific fine-tuning with IWA-labeled job
ad task spans on a subset of high-performance
configurations from experiments I.

Experiments III: Third, we choose models based
on their performance in the development set, eval-
uating the advantages of model ensembling tech-
niques on the test set, and establishing optimal
similarity thresholds for real-world application.

Given the fine-grained classification involving
over 330 IWA classes, conducting a thorough re-
call analysis is impractical. Thus, we prioritize the
quality of the top IWA candidates and evaluate our
suggestions using two main metrics. First, we cal-
culate the accuracy of the top suggestion, counting
it as correct only if it has a manual score of 1 (p@1).
Second, we evaluate the quality of the top sugges-
tions, up to a maximum of three (using a cutoff
threshold determined by the similarity distribution

12Available on Hugging Face: gbert-large-paraphrase-
cosine

https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine
https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine
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[BOA] monitor legal compliance [EOA] [BCO] in environmental and conservation matters [ECO]
IWA suggestion A B
[BOA] Evaluation of features or effects of regulations or policies [EOA]. 0.5 1
[BOA] Give advice on environmental sustainability or environmentally friendly practices [EOA] to others. 0 0
[BOA] Evaluation of environmentally friendly technologies or processes [EOA]. 0 0.5
[BOA] Evaluation of compliance with environmental standards or regulations [EOA]. 1 1
[BOA] prepares and validates monthly, quarterly and annual financial statements [EOA].
IWA suggestion A B
[BOA] estimate project development or operating costs [EOA]. 0.5 0
[BOA] determination of values or prices [EOA] [BCO] for goods or services [ECO] 0 0
[BOA] Calculate financial data [EOA]. 1 1
[BOA] Audit of financial activities, operations or systems [EOA]. 0.5 0.5

Table 4: Examples of models’ IWA suggestions for job ad tasks (in bold), assessed by annotator A and B.
Examples are translated from German to English.

of 20 suggestions), in a more lenient manner. In
this method, suggestions securing a score of 0.5
or above are considered correct but are weighted
based on their respective scores (pW@c).

5.5. Results and Discussion

5.5.1. Experiments I

The results for the development set are presented
in Table 5. The best-performing model and query
configuration settings achieve a precision of 0.763
(p@1) and a weighted cutoff precision (pW@c) of
0.758. There is a considerable performance range
across different settings, but all are much stronger
than the baseline. This highlights the substantial
genre shift between job ads and O*NET and the
significant benefit of model adaptation to specific
domains and tasks in our scenario.

In examining the impact of training data set-
tings, we focus on the best results derived from
various query and markup settings. Notably, the
TasOcc2Act setting demonstrates an improvement
of nearly three points in p@1 compared to T2Act,
while pW@c exhibits nearly identical performance.
In contrast, the TorOcc2Act setting does not yield
any improvement over T2Act. This suggests that
incorporating information on the occupational dis-
tribution of tasks in O*Net is beneficial. However,
how this data is integrated into MNR training is cru-
cial. Aligning MNR training pairs with hierarchical
O*NET information and introducing occupations
as contextual elements to task and activity pairs
helps. On the other hand, introducing pairs of occu-
pations and tasks or activities into the training data,
thereby blending a different ontological relationship
type into MNR pairs, seems to harm the adaptation.

The query configuration at inference time sig-
nificantly influences outcomes, and its effects are
closely intertwined with the data format provided
during training. Consistency between training and
querying at inference seems crucial. Notably, job
titles in queries help when training data also in-

cludes job titles, as seen in the positive effects of
this query in the TasOcc2Act setting (plus 3.0 points
in p@1, compared to querying with span only), but
they have negative effects in settings T2Act and
TorOcc2Act, where no job title contextualization
happened during training. Similarly, the effective-
ness of span-only queries is maximized when train-
ing aligns with this approach, as evidenced in query
comparisons within the T2Act setting. This empha-
sizes the importance of aligning training and query
methods for optimal performance.

The role of markup is also intricately linked with
training data settings. Markup yields a substantial
improvement, particularly in T2Act (resulting in a
2.4-point increase in p@1 for span queries) and
TasOcc2Act (where queries with job titles yield a
5-point increase in p@1). For TasOcc2Act, mark-
ing the boundaries of tasks and job titles clarifies
the role of both components for IWA classification.
The positive effect for T2Act further emphasizes the
benefits of subspan markup, offering insights into
the internal components of tasks, potentially clar-
ifying the role of elements such as Responsibility
Roles or Context. Conversely, in TorOcc2Act, the
absence of markup proves more effective, indicat-
ing that in a learning setting that blends two distinct
ontological relation types, this blending works better
when there is also no separation through markup.

5.5.2. Experiments II

When assessing the benefit of task-specific fine-
tuning, we focus on successful settings, namely
T2Act and TasOcc2Act. MNR fine-tuning with la-
beled spans leads to a strong 10-point improve-
ment, increasing the best model’s p@1 to 0.763.
Similarly, pW@c improved from 0.697 to 0.758,
marking a 6.1-point increase. Hard negatives show
more significant improvements, particularly in p@1.

In the T2Act setting, the update delivered a boost
of at least five points for both query configurations
and evaluation measures. Not surprisingly, span-
only remained the best query configuration. Con-
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Query Configurations
Span Span ±1 Span Span + Job Title

SBERT Models p@1 pW@c p@1 pW@c p@1 pW@c
baseline 0.331 0.473 0.260 0.376 0.201 0.330
T2Act 0.615 0.663 0.367 0.437 0.515 0.610
T2ActMU 0.639 0.697 0.367 0.443 0.533 0.609

+ AdsMU 0.692 0.739 0.586 0.680
+ AdsHNMU 0.734 0.750 0.615 0.698

TasOcc2Act 0.574 0.671 0.331 0.421 0.609 0.686
TasOcc2ActMU 0.633 0.690 0.402 0.456 0.663 0.694

+ AdsMU 0.716 0.758 0.692 0.747
+ AdsHNMU 0.763 0.758 0.704 0.747

TorOcc2Act 0.615 0.678 0.272 0.358 0.533 0.592
TorOcc2ActMU 0.574 0.644 0.231 0.356 0.509 0.586

Table 5: Performance of models and query configuration on dev set (n=169 spans). Best evaluation
results before the task-specific fine-tuning in bold, and after fine-tuning in bold italic.

versely, in the TasOcc2Act setting the span-only
query emerged as the optimal selection, showcas-
ing remarkable improvements of 10.0 points in p@1
and 6.8 points in pW@C. Through the update with
labeled spans, this model seems to show a reduced
dependency on job titles.

5.5.3. Experiments III

The test set results for the top-performing mod-
els, both before and after the update with job ad
spans, are summarized in Table 6, showing av-
erage performance across five runs. We explore
model ensembling by combining predictions from
five models trained with the same configuration. Ini-
tial experiments on the development set revealed
the effectiveness of blending ranks and similari-
ties into the prediction score, with ranks receiving
a weight of 3 and similarities a weight of 1 (see
details in the appendix).

The test set performance, as reported in Table 6,
exhibited a decrease of roughly five to ten points
compared to the development set. This could be
due to overfitting or due to the relatively modest size
of datasets. Improvements by the job ad update
were smaller on the test set than on the develop-
ment set, with the largest gains being just over five
points in p@1 and over seven points in pW@C,
resulting in p@1 around 0.637 and pW@C just
above 0.71. In general, the test set findings align
with previously discussed trends.

Regarding model ensembling over five runs,
improvements were observed across most settings
and measures. For the best model, T2Act after
the ads span update, ensembling brings a notable
p@1 improvement of 2.0 points, reaching a score
of 0.657, and a pW@C improvement of 3.4 points,
achieving a score of 0.752.

Finally, we conducted an assessment of ensem-
bling different models and query settings, em-

Model Query p@1 pW@c
T2ActMU span 0.584 0.678
5x-ensemble (A) span 0.587 0.713
+ AdsHNMU span 0.637 0.718
5x-ensemble (B) span 0.657 0.752
TasOcc2ActMU span + job title 0.597 0.696
5x-ensemble (C) span + job title 0.601 0.751
+ AdsHNMU span 0.637 0.716
5x-ensemble (D) span 0.650 0.738
+ AdsHNMU span + job title 0.623 0.713
5x-ensemble (E) span + job title 0.622 0.733
10x-ensemble mixed (B, D) 0.671 0.761
10x-ensemble mixed (B, E) 0.699 0.755
10x-ensemble mixed (D, E) 0.678 0.740
15x-ensemble mixed (B, D, E) 0.643 0.651

Table 6: Mean and ensemble performance of mod-
els on test set (n=143 tasks), model selection on
dev set performance. Best evaluation measure for
single configurations in bold, for mixed ensembles
in bold italic.

ploying the three best development set configura-
tions: T2Act after the update with ad spans, queried
with the span-only (B), and TasOcc2Act after the
update, queried with both span-only (D) and span
plus job title (E). Ensembles over ten runs (five runs
of two configurations each) produced significant
performance improvements. However, ensembling
over 15 runs (five runs of three configurations each)
did not yield further gains. Notably, ensembling
T2Act queried with span-only, and TasOcc2Act
queried with job titles (B, E), boosted p@1 to 0.699,
a more than 4-point improvement over single-model
ensembling. This hints at the benefits of ensem-
bling different query and training settings.

For the best ensemble setting, we assessed the
consequences of excluding subspan markup during
inference. The markup removal had a clear adverse
impact, leading to a 5.6-point loss in p@1. This
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Figure 2: Normalized prediction score distribution
by evaluation score, on test set, for baseline and
best mixed ensemble.

underscores the importance of preserving subspan
markup during inference to sustain performance.

Figure 2 presents the distribution of predic-
tion scores for perfect, acceptable, and incorrect
IWA suggestions, comparing the best ensembling
model to the baseline. The best model generally
exhibits higher prediction scores, suggesting a re-
duced semantic gap between ontology and job ad
data. Notably, the interquartile range for perfect
suggestions is wider than for incorrect ones, in-
dicating that when there are multiple perfect IWA
suggestions for a query, models do not consistently
provide high ranks or similarities for all of them.
But most importantly, the best model shows a more
substantial difference in prediction scores between
correct and incorrect IWA suggestions compared
to the baseline. For instance, the median value
difference between evaluation scores 1 and 0 is
0.286 for the best model (0.55 vs. 0.26), while only
0.136 for the baseline (0.327 vs. 0.191). Moreover,
it can be observed that 75% of perfect solutions
produced by the best model have values exceeding
0.4, while over 75% of incorrect suggestions fall
below this threshold, highlighting the utility of this
model’s prediction scores.

Building upon this, for practical application, we
aim to determine an optimal similarity threshold
for filtering out hits without suitable IWA candidates,
either due to erroneous extractions or because cer-
tain tasks are not represented in the U.S.-oriented
O*NET. We experimented with a range of thresh-
olds on the development set and selected one that
yielded an improved p@1 while excluding only a
handful of cases. When applied to the test set, this
threshold excludes two cases and results in p@1
of 0.709. In a more lenient setting, considering
evaluation scores of 0.5 as correct too, we reach
p@1 of 0.908.

6. Conclusion

This work addresses the challenge of extracting
specific job tasks from German job postings and

mapping them to fine-grained work activities in the
O*NET labor market ontology, resembling a fine-
grained multi-label classification problem. We em-
ployed SBERT models to enable semantic similar-
ity comparisons between job ad tasks and O*NET
work activities, utilizing the available ontological
data with a Multiple Negatives Ranking loss, and
integrating a limited amount of labeled job ad data
into the training process. The results were promis-
ing, with our best model achieving a p@1 of approx-
imately 70% on the test set, marking a significant
improvement compared to a baseline of 33% by a
general-domain SBERT.

The integration of occupational information from
O*NET, especially when leveraging occupational ti-
tles for contextualizing hierarchical job task relation-
ships with work activities, proved to be of great im-
portance in our experimentation with training data.

However, updating our models with a relatively
small amount of labeled job ad data, focusing on
cases that proved difficult for pre-fine-tuned models,
brought the most substantial performance improve-
ment. This approach addressed the need to bridge
the semantic gap between ontology and job ad data
in the most direct manner.

Our experiments demonstrated the value of in-
corporating subspan markup during training and
inference. Markup likely supported accurate classi-
fication by clarifying the role of subspans in a task
and by streamlining the format between diverse for-
mulations in job postings and more structured, uni-
form ontological work activities. We further showed,
that aligning query formulations with the data for-
mat provided in training yielded favorable results.

For practical use, we investigated model ensem-
bling, which notably enhanced performance, partic-
ularly when combining various training and query
configurations. We additionally set an effective fil-
tering threshold to exclude inappropriate IWA sug-
gestions. This led to strong performance, with
highly appropriate first-ranked IWA suggestions in
7 out of 10 cases and acceptable IWA suggestions
in 9 out of 10 cases, despite the task’s inherent
complexity.

Our work opens up numerous opportunities for
social science research, such as exploring the com-
bination of different tasks into jobs and occupations,
as well as tracking their evolution over time, to high-
light only the most evident examples. Additionally,
the successful mapping of tasks from Swiss job
postings to work activities in the US labor market on-
tology O*NET, effectively bridges the gap between
two languages and two labor markets, allowing for
future international comparisons.
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Appendices

A.1 MLM training parameters
We use the Hugging Face Transformers library
(Wolf et al., 2020) to conduct continued in-domain
pretraining of the transformer-based JobGBERT
model13, largely adhering to their default settings
for MLM. Parameter settings remain consistent for
both training on plain text and training on text with
subspan markup. Subspan markup tags are in-
corporated into the vocabulary for model tokeniz-
ers. Our approach includes a maximum sequence
length of 512 subwords and initiates training with
a learning rate of 5e-5 using a linear learning rate
schedule with a warm-up ratio of 0.05. We use the
Adam optimizer with β1 of 0.9 and β2 of 0.999, and
ϵ of 1e-8. Training occurs over 3 epochs, utilizing
a batch size of 256 on 2.2 million text spans, re-
sulting in a total of 25,800 training steps. Training
happens on an NVIDIA Tesla T4 with 16 GB of
RAM for approximately 10 days.

A.2 MNR training parameters
MNR training utilizes the Sentence-BERT library
(Reimers and Gurevych, 2019). We employ the
[CLS] token’s output embedding as the sentence
representation and cosine similarity with a scal-
ing factor of 50 for measuring sentence similarity.
Training incorporates a linear rate scheduler with
a learning rate of 2e-5 and a minimal warm up of
10 steps. The Adam optimizer is utilized with a
weight decay of 0.01, β1 of 0.9, β2 of 0.999, and
ϵ of 1e-6. Batch size is set to 32. For compara-
bility, in all settings of Experiment I, we train for
138,550 steps (corresponding to 50 epochs for
T2Act, roughly 10 epochs for TasOcc2Act, and
25 epochs for TorOccc2Act), and in Experiment
II, training lasts for 2640 steps (10 epochs). Train-
ing happens on an NVIDIA Tesla T4 with 16 GB of
RAM.

A.3 Prediction score in model ensembles
The prediction score for combining candidate sug-
gestions by different models in ensembling is given
in Equation 1, where r is the rank of a suggestion
by a model and wr is the weight for ranks (3 in

13Available on Hugging Face: jobGBERT

our case), s is the cosine similarity provided by a
model, ws is the weight for cosine similarities (1 in
our case), and n is the number of models in the
ensemble (5, 10, or 15 in our case).

y =

n∑
i=1

(
si × ws + wr ×

√
1

ri

)
(1)

We considered the top 20 suggestions per model
for ensembling. If a candidate from one model’s top
20 was not among the top 20 of another model, we
assigned a default rank value of 21 and a similarity
value of the 20th candidate minus 0.00001.

https://doi.org/10.18653/v1/2023.acl-long.662
https://huggingface.co/agne/jobGBERT
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