
LREC-COLING 2024, pages 11123–11137
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

11123

MDS: A Fine-Grained Dataset for Multi-Modal Dialogue
Summarization

Zhipeng Liu1, Xiaoming Zhang1,2∗, Litian Zhang1, Zelong Yu1

1 School of Cyber Science and Technology, Beihang University, Beijing, China
2 State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

{lzpeng, yolixs, litianzhang, azyu11}@buaa.edu.cn

Abstract
Due to the explosion of various dialogue scenes, summarizing the dialogue into a short message has drawn much
attention recently. In the multi-modal dialogue scene, people tend to use tone and body language to illustrate their
intentions. While traditional dialogue summarization has predominantly focused on textual content, this approach
may overlook vital visual and audio information essential for understanding multi-modal interactions. Recognizing the
established field of multi-modal dialogue summarization, we develop a new multi-modal dialogue summarization
dataset (MDS), which aims to enhance the variety and scope of data available for this research area. MDS provides
a demanding testbed for multi-modal dialogue summarization. Subsequently, we conducted a comparative analysis
of various summarization techniques on MDS and found that the existing methods tend to produce redundant and
incoherent summaries. All of the models generate unfaithful facts to some degree, suggesting future research
directions. MDS is available at https://github.com/R00kkie/MDS.
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1. Introduction

Benefiting from the development of communica-
tion technology, people contact each other at any
time. Due to the explosion of various conversa-
tion scenes, grasping critical information from re-
dundant and complex conversion content is es-
sential. Therefore, some works focus on sum-
marizing dialogue from various domains, such as
meeting (Janin et al., 2003; Carletta et al., 2006;
Zhong et al., 2021; Li et al., 2019), daily chat (Gliwa
et al., 2019; Chen et al., 2021; Zhang et al., 2023),
film (Malykh et al., 2020; Zhu et al., 2021; Chen
et al., 2022), customer service (Zhao et al., 2021;
Lin et al., 2021; Zou et al., 2021), and medical
conversation (Song et al., 2020; Joshi et al., 2020;
Zhang et al., 2021a). In most realistic cases, dia-
logues occur in a multi-modal scene, in which the
data contains the dialogue text and the audial-visual
accompaniment of the dialogue background. How-
ever, previous dialogue summarization datasets
only focus on the raw text content, which cannot
learn the vital information from the multi-modal con-
tent in the multi-modal dialogue scenes.

When we talk to others, we tend to use tone and
body language to illustrate our intentions, which
can not be directly captured by the text content of
dialogues. Visual and audial information in the en-
tire conversion scene also provides crucial informa-
tion. For example, some postures and expressions
indicate the attitude of a person and the critical con-
tent of a talk, and the intonation and pauses in a
speech can also indicate the importance of the con-
tent. Such visual and audial information is crucial
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to the whole dialogue conversion. Relying solely
on textual information may result in the omission
of crucial details originating from the visual and
audial modalities, rendering it ineffective when gen-
erating summaries for multi-modal dialogue scenes.
Consequently, it becomes imperative to incorporate
multi-modal information into summarizing dialogue.

However, there is still a significant challenge in
multi-modal dialogue summarization. First, few
datasets are available for multi-modal dialogue
summarization. It is time-consuming to annotate
the multi-modal dialogue summarization (AMI only
includes 137 pieces of data). Most previous dia-
logue summarization datasets focus on studying
various domains but not various modalities. On
the other hand, there are some multi-modal sum-
marization datasets. However, the different con-
tent modalities are generally asynchronous. Syn-
chronous multi-modal information can realize multi-
modal data fusion better. The temporal relationship
and correlation between them can be maintained by
processing data of different modals simultaneously.

To tackle the challenge, we construct a novel
multi-modal dialogue summarization dataset, MDS.
We compare MDS with other summarization
datasets in Table 1. MDS differs in two aspects. On
the one hand, compared to previous dialogue sum-
marization datasets, MDS contains multi-modal
content, including over 16,000 minutes of video
clips with images and audio. On the other hand,
compared to conventional multi-modal summariza-
tion datasets, MDS provides synchronous audio
and video data from the clips. To generate fine-
grained information, a video scene cutter based
on three-modality voting is proposed to split the

https://github.com/R00kkie/MDS
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Data Size Lang. Input Tokens(Avg) Speakers(Avg) Image Audio Video Syn.
Dialogue Summarization Datasets
AMI Carletta et al. (2006) 137 EN 4757.0 4.0 Yes Yes Yes Yes
ICSI Janin et al. (2003) 59 EN 10189.0 6.2 No No No -
SAMSum Gliwa et al. (2019) 16.4k EN 83.9 2.2 No No No -
QMSum Zhong et al. (2021) 1.8k EN 9069.8 9.2 No No No -
SumScreen Chen et al. (2022) 26.9k EN 6612.5 28.3 No No No -
CSDS Lin et al. (2021) 1.1k ZH 213.86 2.0 No No No -
Multi-Modal Summarization Datasets
MSMO Zhu et al. (2018) 314.6k ZH 722.68 1.0 Yes No No No
Hierarchical Zhang et al. (2022) 62.9k ZH 955.26 1.0 Yes No No No
Our Datasets
MDS 11.3k ZH/EN 186.77 3.4 Yes Yes Yes Yes

Table 1: The comparison of different dialogue summarization datasets, multi-modal summarization
datasets, and MDS.

Summary

Amy is playing a game of blowball with Koothrappali

and Amy is happy that Koothrappali won

but he doesn't feel the joy of winning.

Textual Modality

Audial Modality

Visual Modality

Text

Characters: Amy, Koothrappali

You won!

Certainly doesn't feel like it, does it?

You know, my wife used to throw theme parties like this all the time

oh, I guess that's where raj gets it from.

Figure 1: An example from MDS. A case consists of dialogue utterances, a video clip, and a human-written
summary.

videos into fine-grained video clips. The annota-
tors are asked to watch the clips and write a target
summarization for the multi-modal dialogue. Then,
several methods are empirically evaluated on MDS,
including the conventional extractive and abstrac-
tive summarization models. Analytical experiments
show that MDS is a highly abstractive summariza-
tion dataset, benefiting from multi-modal informa-
tion. The poor performance on conventional ex-
tractive summarization models indicates that other
modal information fuses in MDS. For example, in
Figure 1, red is for text modality, blue is for audial
modality, and green is for visual modality. In the
summary text, the visual modality supplies extra
information, “blowball”, which cannot be generated
from the textual modality. The mood of the charac-
ters is also captured by the visual modality, “Amy is
happy.” The visual modality provides critical facts
that do not appear in the textual modality. When

we try to emphasize crucial points and draw atten-
tion, we usually raise our voices involuntarily. In
the dialogue textbox, we denote the volume of each
sentence by a histogram, and the second sentence
is the most boisterous one. In the summary text,
the noisiest sentence helps to find the key point
“doesn’t feel”.

There are two contributions of this paper: (1)
We introduce a multi-modal dialogue summariza-
tion dataset that expands the existing body of re-
sources with its unique features and scope; (2)
we build an annotation framework for multi-modal
dialogue summarization, including a video scene-
cutting model and a set of standards.

2. Related Work

As a data-driven task, several datasets have been
proposed to promote dialogue summarization.
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Figure 2: The overview of dataset construction.

SAMSum Gliwa et al. (2019) is the first large-
scale dataset on dialogue summarization, which be-
longs to daily chat. DialogSum Chen et al. (2021)
is also a daily chat dataset. SAMSum is written
by one human, and DialogSum is derived from the
existing dialogue dataset. GupShup Mehnaz et al.
(2021) is a multi-lingual version of SAMSum, focus-
ing on the code-switch problem in Hindi-English.

AMI Carletta et al. (2006) and ICSI Janin et al.
(2003) are meeting datasets related to working and
research scenarios. AMI includes microphones, in-
dividual and room-view video cameras, and output
from a slide projector and an electronic whiteboard
but small in scale. Both datasets are included in
QMSum Zhong et al. (2021) and further broadened
for query-summary pairs, particularly for lengthy
and complex meetings.

SumTitles Malykh et al. (2020) and Summ-
Screen Chen et al. (2022) crawled film data on the
Internet, corresponding transcripts for dialogues
and recaps for summaries, which are generally
coarse-grained. MediaSum Zhu et al. (2021) com-
prises a rich collection of interviews extracted from
prominent TV news programs.

TDS Zou et al. (2021), TODSum Zhao et al.
(2021), and CSDS Lin et al. (2021) are for cus-
tomer service. The summaries of TDS are from
an agent perspective. TODSum contains more
complex multi-domain conditions. CSDS summa-
rizes JDDC Chen et al. (2020) and supplies a fine-
grained annotation, including both agent and user
perspectives. Such detailed annotations empower
researchers to delve deeper into the nuances of
customer service interactions.

Chunyu Song et al. (2020) is based on online
health platforms. Dr. Summarize Joshi et al.
(2020) is collected from a telemedicine platform.
DP Zhang et al. (2021a) converts doctor-patient
conversation audio to text contents and treats it as
a text-only task. Regrettably, DP does not further
develop for audial modality after transcription.

Existing dialogue summarization datasets are far

from the actual conversation scene. The lack of
multi-modal data fusion can not capture non-verbal
information such as emotion, intonation, expres-
sion, and action, which do not help grasp the con-
text and semantics of the dialogue and produce a
more accurate and coherent dialogue summary.

3. Dataset Construction

MDS is comprised of 11305 dialogs divided from TV
series (“The Big Bang Theory” sitcom) and TikTok
video clips and human-written summaries under
the reference of the corresponding recaps. Figure 1
shows an example in MDS. The summaries in MDS
are meticulously created through four steps, ensur-
ing the inclusion of all essential information while
maintaining a coherent and informative narrative
structure.

• Video Scene Cutting. We propose a multi-
modal video scene cutter to split one episode
from a TV series with several topics into fine-
grained video clips.

• Summary Generation. We provided annota-
tors with detailed and nuanced guidance and
relevant recaps to ensure that the resulting
summaries were meticulously crafted.

• Quality Check. There are cross-inspections
between different annotators and random
checks after annotation to identify potential
discrepancies or inconsistencies.

• Data Cleaning. Dialogs with low information
are removed. For the remaining dialogs, a
linguistic data cleaning is performed. Then we
clean the data and split MDS into three sets.

3.1. Video Scene Cutting
Conventional dialogue summarization datasets in
TV series generally regard one episode as a piece
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of data, roughly with brief recaps crawled from the
Internet for summary texts. It often leads to topic
confusion since the length of the dialogue is over-
long, and the crawled recaps are simplistic. Before
annotators are asked to generate summaries under
the existing recaps for a single dialog, we build a
video scene cutter to split a video into a trail of clips.
A coherent video clip is often accompanied by in-
ternal semantic, voice, and place coherence. We
build a multi-modal method of video scene cutting
according to this. There are three modal data of a
dialog in the video: visual, audial, and text modality.
We define a break-point for each modality. A break-
point is the second that splits two clips with the
complete semantics of a long video. For the visual
modality, CLIP (Radford et al., 2021) is applied to
find the break-point. For images drawn from each
second:

I = {i1, i2, . . . , in} (1)
Feed I and twenty-nine location labels appearing in
the playscript with stage directions into the Vit-B/32
for location classification as L = {ℓ1, ℓ2, . . . , ℓn}. ℓi
represents the location label of i-th image. If ℓi−1

is not the same as ℓi, the i-th second of this video
is considered as a visual break-point. For example,
if ℓi−1 is bedroom and ℓi is kitchen, the i-th second
is a visual break-point. The occurrence of topic
changes is often accompanied by transitions in
physical locations. It is worth noting that when there
is a shift in scenes or settings, there is a heightened
probability of encountering a distinct break-point in
the ongoing discussion or conversation.

BERT (Devlin et al., 2019) is applied to find the
break-point in the text modality. Specifically, paring
off the subtitle text T = {t1, t2, . . . , tn} into pairs:

SP = {(t1, t2) , (t2, t3) , . . . , (tn−1, tn)} (2)

and feed SP into the BERT for the next sentence
prediction (NSP), reasoning whether ti is the next
sentence of ti−1. The output is generated from
{1, 0}. Zero represents that ti is the next sentence
of the ti−1, so (ti−1, ti) is not a text break-point.
One represents that the second corresponding to
(ti−1, ti) is a text break-point. The instinct of tex-
tual break-point is that the sentences in the same
conversation share semantics consistency. Sen-
tences in different conversations are supposed to
lose semantic coherence detected by NSP.

For the audio, the volume was normalized.

A = {a1, a2, . . . , an} (3)

If the voice value of a second ai is less than the
threshold value, this is an audial break-point. Every
new act should begin with a brief pause, distinguish-
ing from the previous scene.

After finding the break-point from three modal-
ities, we apply a voting mechanism to determine

where to cut. For a given second, more than two
of the three modalities vote, we consider it a ‘real’
break-point and cut the video here. Only videos
from TV series need to be cut; videos from TikTok
can skip this step because most of them are short
enough to have a concentrated topic.

3.2. Summary Generation
The annotators are asked to write summaries for
clips divided above, under the reference of the cor-
responding video clips, textual transcripts, and re-
caps. The annotation adheres to three criteria: (1)
Type check. If the video content is not about dia-
logue, skip it. (2) Character mark. The annotator
was instructed to complete the anaphora resolu-
tion and mark the speaker identity appearing in
clips. (3) Summary generation. The annotator
summarizes dialogues and derives core informa-
tion through three modalities. Follow the above
annotation guidelines to ensure that annotators fol-
low consistent annotations. Communicate with an-
notators regularly, answer questions, and provide
feedback to ensure they understand and perform
tasks correctly. Annotators should identify the topic
of the conversation and determine what is essen-
tial to it. The summary content should be logically
structured and organized in chronological order,
topic order, or importance order. The summary
should concisely summarize the key content, avoid
verbosity and unnecessary details, and use clear
and unambiguous language to make it easier to un-
derstand. The subsequent quality control module
ensures the quality of the work of annotators.

3.3. Quality Check
To ensure quality, cross-inspection between differ-
ent annotators is performed after annotation. The
annotator is paid to find incapable samples, and
the annotators whose annotation is found with mis-
takes are punished while inspecting. The cross-
inspection adheres to four criteria: (1) Summary
contains all vital information in the dialogue. (2)
The Summary is fluent in presentation and easy
to follow. (3) There are no vague problems in pro-
noun reference, and the speaker identity is labeled
precisely. (4) There are no Factual inconsistencies
in the summary. After the second cross-validation,
15% cases are manually checked by us. If errors
are found in one bunch, corresponding annotators
are asked to re-annotate the whole bunch and re-
peat the process of inspection and sampling.

3.4. Data Cleaning
We delete incorrect typos and grammatical errors
and filter out duplicated data based on text simi-
larity. First, we delete clips with low information
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and repetition, like the beginning and end of each
episode, and too short clips, even without one word.
The next step is anaphora resolution. When we
find personal pronouns, we convert pronouns to
corresponding character names. Then, delete the
meaningless function word from the text, like “then”,
“later”, “moreover”, “furthermore” and “next”.

4. Dataset Analysis

MDS encompasses over two hundred distinct top-
ics, making it an invaluable resource for research
and analysis of multi-modal dialogue summariza-
tion. MDS provides synchronous audio and video
data from the clips, and an insightful experiment
conducted on MDS reveals its multi-modal nature,
showcasing the incorporation of novel words and
expressions that go beyond the textual domain.
The dialogues within MDS maintain a succinct na-
ture, and the short ones make up about 80% of
the total. Furthermore, when evaluating the perfor-
mance of extractive models on MDS, the effective-
ness and advantages of leveraging multi-modalities
in dialogue summarization become evident.

4.1. Split Coverage
We designed experiments to successfully verify the
effectiveness of the video-cutting model. Inspired
by Intersection over Union (IoU) (Yu et al., 2016)
and ROUGE-L (Lin, 2004), which is based on the
longest common subsequence, we proposed new
evaluative criteria to measure the degree of corre-
lation between the short video clips generated by
the model and the label ones. The intersection re-
gion and union region between two video clips are
calculated. These regions can be represented by
timestamps or frame indices. We define Video-IoU
(VIou):

V IoU =
Intersection_Duration

Union_Duration
(4)

In this formulation, "Intersection Duration" repre-
sents the temporal intersection of the short video
segment generated by the model and the original
video time period, and "Union Duration" represents
their temporal union.

Split_Coverage =
1

M

M∑
i=1

max(V IoU(ci, lj)) (5)

ci represents a short video clip generated by mod-
els. li represents a short video clip generated by
human annotators. For the video clips generated
by the cutting model, VIoU is calculated with all
labeled videos, and the maximum value is taken.
The average VIoU value of all short video clips is
calculated to obtain the performance index of the

Model Split Coverage
Audio 0.1859
Image 0.0994
Text 0.2940

Audio&Image 0.3680
Audio&Text 0.4210
Image&Text 0.2455

Proposed Model 0.6564

Table 2: Comparison of video cutting performance
in different modality models.

Count Name
AMI

102 remote_group_buttons_design
23 project_manager_remote_team
12 group_project_design_research

SumScreen
23377 time_home_baby_room

183 xander_baby_something_truth
66 brody_baby_father_son
28 slater_president_blessing_mess

MDS
2728 ndustry_girl_future_student
991 okay_tops_cool_right
137 actor_actors_profession_star
118 door_noise_sound_knock
109 house_angry_home_air
107 apartment_tenant_weeks_guys
106 film_movie_theater_movies

Table 3: Top topics in MDS, AMI, and SumScreen
detected by BERTopic

whole video cutting model, Split Coverage. For
comparison, we pick 100 minutes from raw videos
and label them.

Our multi-modal model demonstrates a signifi-
cant advantage over single-modal models in evalu-
ating short video clip cutting. By seamlessly inte-
grating audio, image, and text modalities, our model
achieves a correlation score of 0.6564, surpass-
ing all the other models. This resounding success
crystallizes the central thesis of this study – the
undeniable advantage of a multi-modal approach
in video cutting.

4.2. Topic Analysis
We use BERTopic (Grootendorst, 2022), a topic
modeling technique, to analyze the summary topics
in MDS. We depict the top dataset topics in Table 3.
There are 261 topics in total, and the amount of
topics varies from 2728 to 10. This wide-ranging
coverage underscores the breadth and depth of
subjects MDS covers, especially compared to other
datasets such as AMI, which contains a mere three
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uni-gram bi-gram tri-gram four-gram
MDS 2.16 54.14 91.79 98.53
CSDS 3.06 31.14 68.96 85.44
AMI 3.67 43.80 68.32 73.31
SumScreen 2.36 29.27 59.59 82.63

Table 4: Fraction (%) of n-grams in the output sum-
maries that do not appear in the inputs

topics, or SumScreen, which encompasses six top-
ics. The multi-domain nature of the data within
MDS plays a pivotal role in model training to adapt
to a diverse range of scenarios and tasks effec-
tively. By training on data sourced from different
domains, models will have the opportunity to learn
a broader spectrum of feature representations and
patterns. Such data features in MDS instilled within
the training process empower models to transfer
knowledge and apply learned insights from one
domain to another, thus fostering a more robust
and adaptable framework for tackling the complex-
ities in a multitude of scenarios and tasks. The
outcome of the topic experiment demonstrates that
MDS presents an arduous and intricate testbed for
multi-modal dialogue summarization, specifically
designed to evaluate model generalization.

4.3. Novel Words
We empirically compare MDS with existing dia-
logue summarization datasets. CSDS is a Chinese
dataset for customer service. AMI and SumScreen
are both English datasets. Table 4 compares the
percentages of novel n-grams in the reference
summary against the source document/dialogue.
The result intuitively reflects the level of abstrac-
tion of annotated summaries. MDS outperforms
in most metrics well. MDS is absolutely 10.34%,
22.93%, and 13.09% higher than other datasets on
bi-gram, tri-gram, and four-gram. A Chinese dia-
logue dataset, CSDS, is also employed to remove
the impact of language characteristics. Unlike the
dialogue summarization datasets proposed before,
MDS is a multi-modal dataset. The result of the
novel word experiment verifies our original inten-
tion of presenting MDS, that information from other
modalities complements the text.

4.4. Data distribution
We split instances by the number of words in ref-
erence. The statistics of the splits are shown in
Table 5. The short summary makes up about 80%
of the total. The section of video scene cutting splits
the videos into segmented clips with the smallest
complete semantic fragment. The statistics indi-
cate the effectiveness of video scene cutting. Each
episode is usually 22 minutes long, so cutting it into

Train Dev Test
Short (summary<50 words) 7811 974 974
Medium (50 words≤summary<100) 924 113 113
Long (100 words≤Summary) 316 40 40
SUM 9051 1127 1127

Table 5: Statistics of train/dev/test splits
and short/medium/long splits for MDS,
short/medium/long split by the number of
words in reference

10-20 video clips is appropriate. Each segment is
about 1-2 minutes long.

4.5. Improvement from Multi-modal
Generally, compared to mono-modal summariza-
tion, multi-modal summarization is expected to
bring extra information to the generated summary
(Zhang et al., 2024). To measure the improve-
ment brought by multi-modal information, we em-
ploy three extractive summarization models, Tex-
tRank (Mihalcea and Tarau, 2004), BertSum (Liu,
2019), and CentroidSum (Rossiello et al., 2017),
to evaluate the performance of MDS and mono-
modal datasets. These models extract summaries
from existing texts and lack supplements from other
modals. If a dataset yields high scores for extractive
models, it suggests that it predominantly relies on
textual information. We hypothesize that given the
inferior performance of three extractive methods on
MDS compared to other dialogue summarization
datasets, incorporating multi-modal information will
enhance summary quality.

The results are shown in Table 6. We use
the ROUGE scores here. MDS sees the lowest
ROUGE scores in all terms of models. None of the
ROUGE scores exceeded 27. The experiment indi-
cates the improvement brought by multi-modal in-
formation compared with text-only dialogue summa-
rization datasets. When human annotators summa-
rize the dialogue, they receive information from mul-
tiple modalities. As shown in Figure 1, the phrase
“playing a game of blowball” never appears in the di-
alogue text. Annotators see the “blowball” and write
the word in the final summary. Moreover, extrac-
tive models cannot handle this information, which
has never appeared in the text before. However,
English and Chinese belong to different language
families, with significant disparities. To mitigate the
influence of linguistic characteristics, we utilized
two English datasets alongside a Chinese dataset
(CSDS). Although homologous languages exhibit
more minor differences than those between dis-
tinct languages, there remains an evident contrast
between MDS and CSDS.

Furthermore, aimed to enhance the understand-
ing of multi-modal improvement, we developed an
annotation website that extracts nouns and pro-
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TextRank BertSum CentroidSum
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

MDS 24.01 11.92 18.37 24.39 11.34 17.76 23.40 8.95 12.88
CSDS 35.67 17.56 27.06 37.10 17.08 33.29 42.06 19.81 33.97
AMI 77.73 58.87 74.26 78.09 62.55 73.26 77.11 51.65 72.15

SumScreen 75.54 46.89 73.54 76.22 50.09 73.22 79.19 49.03 72.87

Table 6: The ROUGE scores of three extractive summarization models, TextRank, BertSum, and Cen-
troidSum.

1 0 0 . 0 0 % 1 0 0 . 0 0 %

7 0 . 4 3 %
5 5 . 9 1 %

0 . 0 0 % 0 . 0 0 %

2 9 . 5 7 %

2 3 . 8 7 %

0 . 0 0 % 0 . 0 0 % 0 . 0 0 %
2 0 . 2 2 %
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C o n t e x t  R a t i o  o f  D i f f e r e n t  D a t a s e t s

 A u d i o
 V i s i o n
 T e x t

Figure 3: Comparison of context sources for re-
sponses in different dialogue datasets.

nouns from three summarization datasets. An-
notators are asked to determine whether these
words and whole-sentence responses refer to 1)
audio context, 2) vision context, 3) text context, and
4) others. We randomly pick 100 samples from
each dataset. MDS contains a combination of text
(55.91%), vision (23.87%), and audio (20.22%).
The lowest text ratio (55.91%) indicates that MDS
is a multi-modal dataset, meaning it includes data
from multiple sources or modalities, while CSDS
and SumScreen are entirely composed of text data
(100% in the Text column). MSMO, while also offer-
ing multi-modal data, emphasizes the vision modal-
ity more strongly, in contrast to the more balanced
distribution of MDS.

The outcome of the experiments confirms our
initial objective of presenting MDS, and informa-
tion from other modalities supplements the textual
content. Relatively high levels of novel n-grams,
the lowest ROUGE scores of extractive models,
and the lowest text ratio also prove it. These find-
ings emphasize the complex and intertwined na-
ture of our dataset, highlighting the improvement
of considering various modalities in our dataset.
MDS promises to contribute to being a challenging
testbed for multi-modal dialogue summarization

5. Experiment

5.1. Experiment Setup

We compare MDS in three categories of baselines:
text summarization, dialogue summarization, and
multi-modal summarization, a total of eight models.
S2S (Luong et al., 2015) is a standard text summa-
rization model with sequence-to-sequence architec-
ture using an RNN encoder-decoder and a global
attention mechanism. PGN (See et al., 2017) is a
text summarization model with an attention mecha-
nism and pointer network. Transformer (Vaswani
et al., 2017) is a classic text summarization model,
which is a non-pre-trained baseline. T5 (Raffel
et al., 2020) is a universal pre-trained abstractive
text summarization model on dozens of languages.
MDialBART (Wang et al., 2022) presents a pre-
trained dialogue summarization model. ConDig-
Sum (Liu et al., 2021) proposes a dialogue summa-
rization model of topic-aware contrastive learning.
HOW2 (Palaskar et al., 2019) is the first multi-modal
summarization model proposed to summarize the
video content. VMSMO (Li et al., 2020) proposes
a dual-interaction multi-modal summarizer to gen-
erate multi-modal output. ROUGE-based meth-
ods (Lin, 2004) and BLEU-based methods (Pap-
ineni et al., 2002) are widely used metrics by mea-
suring the overlap of n-grams between two texts.
Here we choose R-1, R-2, R-L, B-1, B-2, B-3, and
B-4 for comparison.

5.2. Results and Discussion

Table 7 presents the experimental results. HOW2
achieves the best R-1 (15.94) and R-L (14.50),
while R-2 (2.07), B-1 (49.76), B-2 (37.20), B-3
(27.80), and B-4 (21.08) are achieved by T5. The
dialogue summarization models cannot perform ex-
cellently in ROUGE scores more than other base-
lines. This may be because traditional dialogue
summarization models only focus on specific do-
mains, such as interviews or media, and cannot
deal with datasets such as MDS, which contain
data from multi-domains. Furthermore, compared
to traditional textual models, HOW2 outperforms T5,
a pre-trained model, in R-1 and R-L. Multi-modal
models are able to capture multi-source informa-
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R-1 R-2 R-L B-1 B-2 B-3 B-4
Traditional Textual Model
S2S (Luong et al., 2015) 4.75 0.02 4.59 9.50 5.65 2.88 1.86
PGN (See et al., 2017) 13.26 1.12 11.83 18.58 13.28 10.02 7.81
Transformer (Vaswani et al., 2017) 14.26 1.48 13.16 31.44 22.48 15.98 11.31
T5 (Raffel et al., 2020) 13.59 2.07 11.99 49.76 37.20 27.80 21.08
Dialogue Summarization Model
MDialBART (Wang et al., 2022) 9.94 0.56 8.83 23.13 17.71 12.66 8.74
ConDigSum (Liu et al., 2021) 9.62 0.75 9.18 19.76 15.08 11.40 8.56
Multi-Modal Summarization Model
HOW2 (Palaskar et al., 2019) 15.94 1.93 14.50 19.58 14.80 11.78 9.52
VMSMO (Li et al., 2020) 11.67 1.53 11.26 15.75 10.75 8.26 6.58

Table 7: ROUGE score and BLEU scores of summarization baselines on MDS.

R-1 R-2 R-L B-1 B-2 B-3 B-4
HOW2 15.94 1.93 14.50 19.58 14.80 11.78 9.52
w/o vision 13.73 1.74 12.61 17.64 15.01 11.45 8.90
VMSMO 11.67 1.53 11.26 15.75 10.75 8.26 6.58
w/o vision 9.26 0.49 8.92 13.45 10.88 7.85 5.91

Table 8: Ablation study of multi-modal summariza-
tion model.

tion, and more comprehensive and rich summary
content can be obtained. Instead of focusing on the
content of the text, visual features can also be in-
corporated to generate more accurate and precise
summaries. Multi-modal summarization models
can take advantage of the complementarity and in-
teraction between different data sources to improve
the quality of summaries. In contrast, text-only sum-
marization models may not capture the detailed
information of the image and thus may be limited in
the summarization quality. The result validates the
effectiveness of multi-modal information. However,
T5 performs more excellently in BLEU scores than
conventional multi-modal models. It is possible for
conventional multi-modal models to focus only on
keyframes or part of the video clips while ignoring
other important information. It may result in incom-
plete or inaccurate summary segments generated.
The experiments indicate that existing models can-
not handle the multi-modal dialogue summarization
task, and MDS is a challenging testbed for it.

5.3. Ablation Study
An ablation study was conducted to show that MDS
is a challenging testbed. The most apparent ob-
servation from the results is that both How2 and
VMSMO, which incorporate visual information, out-
perform their counterparts that do not use visual
information (How2 w/o vision and VMSMO w/o vi-
sion) across almost all evaluation metrics. Only the
B-2 score doesn’t see substantial improvements.
Specifically, for How2, the inclusion of visual infor-

mation results in substantial improvements. The
R-1 score significantly increases from 13.73 (How2
w/o vision) to 15.94 (How2), indicating better align-
ment with the reference summaries. In the case
of VMSMO, the impact of incorporating visual data
is striking. The Rouge-1, Rouge-2, and Rouge-L
scores all see substantial improvements, underlin-
ing the positive influence of visual information on
content alignment and coherence.

The findings underline the positive impact of in-
cluding visual data on the quality of generated di-
alogue summaries, emphasizing the cooperativity
between text and visual modalities in enhancing the
overall performance of dialogue summarization.

6. Conclusion and Future Work

This paper proposes a fine-grained bilingual
dataset, MDS, for multi-modal dialogue summa-
rization. We introduce a multi-modal dialogue sum-
marization dataset that facilitates deeper under-
standing and improved analysis in multi-modal di-
alogue summarization. According to the experi-
ments on MDS, multi-modal dialogue summariza-
tion is a unique and challenging task. To build
up the dataset and solve problems existing before,
we propose an annotation framework to produce
a summary for multi-modal dialogue, including a
video scene-cutting model. In general, we comple-
ment the gap in which current dialogue summariza-
tion research mainly focuses on textual utterance
and ignores the multi-modal content.

Factual inconsistencies are still the central prob-
lem in dialogue summarization. In the future, we
are devoted to solving the problem from the follow-
ing perspectives: (1) Utilizing multi-modal informa-
tion to constrain the generation of the summary. (2)
Applying contrastive learning to multi-modal learn-
ing. (3) Extending evaluation methods of factual
inconsistencies through the dialogue system.
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7. Ethical Discussion

Data collection and privacy. MDS is a dataset of
links obtained from Common Crawl that gathers
content from TV episodes and publicly available
Internet. It should be noted that the dataset may
contain links to videos with personal information,
such as photos of faces, location information, or
other personal-related content. In addition, we of-
fer a contact form on our website to facilitate the
processing of requests for the removal or black-
listing of corresponding links from MDS in cases
where problematic personal or copyrighted content
is present. Bias against people of a specific gender
or race. The series and interviews certainly per-
petuate these antiquated beliefs about our society.
Stereotypical depictions of both genders are a sig-
nificant component of the sitcom. For instance, the
character of the heroine is portrayed as a stereo-
typical “dumb blonde”, a woman whose character
features are at the forefront of both narrative and
comedy. In the whole series, there is only one
character of color, Raj, compared to the over five
white actors and actresses. Aggressive and of-
fensive content. Sitcoms can serve as a highly
effective tool for addressing current issues in a non-
threatening and approachable manner, facilitating
productive dialogue and identification of concerns.
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Appendix A. Maintenance and Data
Sources

License. MDS is distributed under the Creative
Commons (CC) copyright licenses. It is impor-
tant to note that the source documents used in the
dataset are already in the public domain, thereby
respecting copyright regulations. We have imple-
mented a contact form on our website to address
any concerns related to personal or copyrighted
content within MDS. This form serves as a chan-
nel for users to submit requests for the removal
or blacklisting of specific links or content that may
infringe upon personal rights or copyrights. We are
committed to promptly and diligently processing
these requests to maintain the integrity and legality
of the dataset. The authors bear all responsibility in
case of violation of rights and confirm the dataset
licenses.

Maintenance. The authors are committed to
providing long-term support for the MDS dataset.
Currently, MDS files are hosted on GitHub, allowing
for easy access and collaboration. TikTok videos
may be deleted by the publisher. To safeguard
against the potential loss of TikTok videos, we have
taken proactive measures by uploading all the nec-
essary video content to OneDrive, an online stor-
age platform. This backup ensures the availability
and continuity of the dataset, even if the original
TikTok videos become unavailable in the future.
Additionally, the authors are committed to actively
monitoring the usage of the dataset and addressing
any issues that may arise. This includes promptly
addressing bug fixes, resolving technical concerns,
and providing necessary updates to ensure the
dataset remains reliable and useful to the research
community.

Data Sources. In MDS, our dataset comprises
two primary sources: the sitcom “The Big Bang
Theory” and TikTok videos. These sources were se-
lected to create a rich multi-modal dialogue dataset
with diverse content and unique characteristics.
“The Big Bang Theory” as a Data Source. “The
Big Bang Theory” sitcom serves as a valuable re-
source for multi-modal dialogue data due to its
abundance and availability. Sitcoms, including
"The Big Bang Theory," are widely recognized for
their scripted nature and well-defined character in-
teractions. The show’s popularity and extensive
episode collection make it an ideal choice for col-
lecting dialogue data. By utilizing this source, we
can tap into the humor, nuanced conversations,
and dynamic exchanges that are characteristic of
sitcoms. Moreover, the structured scenes within sit-
coms provide a natural framework for understand-
ing dialogue flow, facilitating the annotation and
analysis process. TikTok as a Data Source Com-
plementing the sitcom data, we incorporate TikTok
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videos as a contemporary and user-generated data
source. TikTok has gained immense popularity as
a social media platform known for its short-form
videos, creative content, and diverse user base.
To download videos from TikTok, we use an open-
source project, TikTok Download 1. We introduce
a unique aspect of modern communication and ex-
pressions by including TikTok in our dataset. These
videos capture a wide range of dialogues, encom-
passing various genres, trends, and cultural refer-
ences. However, it is important to acknowledge
the challenges associated with TikTok data, such
as its dynamic nature, shorter video duration, and
potential noise. We took careful steps to curate
relevant and meaningful TikTok videos, ensuring
they align with the objectives of our dataset.

Appendix B. Annotation Process

The annotation platform is built based on an open-
source project, Label-Studio 2. This platform allows
annotators to generate summaries for individual di-
alogues, drawing references from various sources,
including video clips, textual transcripts, and tip
recaps. Textual transcripts are obtained from sub-
title files to annotate the dialogues from sitcoms,
ensuring accuracy and alignment with the corre-
sponding scenes. Additionally, tip recaps for the
sitcom dialogues are collected from TV drama web-
sites3, providing a concise summary of the episode
or scene under consideration. These tip recaps
offer contextual information and aid in capturing
the key points and narrative highlights. For TikTok
videos, the annotation process involves utilizing
different sources. The textual transcripts for Tik-
Tok dialogues are obtained from Whisper4. These
transcripts capture the spoken content within the
TikTok videos, enabling a textual representation
of the dialogues. Moreover, tip recaps for TikTok
videos are derived from the titles accompanying the
videos. These titles often provide a brief description
or summary of the video content, aiding annotators
in understanding the context and essence of the
dialogues within the TikTok videos.

By leveraging these diverse sources, including
subtitles, TV drama websites, Whisper transcripts,
and video titles, the MDS annotation platform en-
sures that annotators have access to comprehen-
sive references while writing the dialog summaries.
This approach allows for a holistic and informed
annotation process, promoting the creation of high-
quality summaries that capture the essence of the

1https://github.com/Evil0ctal/Douyin_
TikTok_Download_API

2https://github.com/heartexlabs/
label-studio

3https://www.tvmao.com/drama/
4https://github.com/openai/whisper

dialogues across both sitcoms and TikTok videos.

Appendix C. Model Training Details

Text Translation. MDS is a bilingual dataset, and
the annotations are conducted in Chinese for sev-
eral reasons. The annotators responsible for gener-
ating the annotations are undergraduate students
at Beihang University, whose mother tongue is Chi-
nese. Leveraging their linguistic expertise and na-
tive fluency in Chinese allows for a meticulous and
accurate capturing of the nuances and intricacies of
dialogue in the Chinese language. However, recog-
nizing the importance of promoting widespread ac-
cessibility and universality, we employ the Google
Translate interface to translate the Chinese anno-
tations into English. By leveraging machine trans-
lation technology, we aim to facilitate access to
the MDS dataset for researchers and practitioners
who may not be proficient in the Chinese language.
The decision to conduct annotations in Chinese by
native speakers and provide English translations
through the Google Translate interface reflects our
commitment to both capturing the richness of Chi-
nese dialogue and promoting the usability of the
dataset for a wider audience. This approach facili-
tates cross-lingual research, encourages collabora-
tion, and fosters a more inclusive dialogue research
community.

Model and Hyperparameter Choice. To carry
out our experiments, we utilize the English version
of the dataset. This decision enables us to focus
on exploring and analyzing the characteristics and
performance of the model in an English language
context. The experiments are conducted on an
NVIDIA Tesla V100 GPU. In the text embedding
module of our research, we employ BERT bert-
base-uncased as the pre-trained word embedding
model. This choice allows us to initialize our em-
bedding matrix, which has a size of 30,522 words,
with BERT contextualized representations. The di-
mensions of the embedding matrix are set to 768,
aligning with the output dimensions of BERT. To
optimize the model during training, we utilize the
Adam optimizer. To establish an effective learn-
ing rate schedule, we set the initial learning rate
to 1e-3 and implement a decay strategy where the
learning rate is multiplied by 0.9 every ten epochs.
This approach facilitates stable and gradual learn-
ing throughout training, ensuring convergence to
an optimal solution.

Appendix D. MDS Datasheet

https://github.com/Evil0ctal/Douyin_TikTok_Download_API
https://github.com/Evil0ctal/Douyin_TikTok_Download_API
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://www.tvmao.com/drama/
https://github.com/openai/whisper
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Dataset Facts
Dataset MDS
Instances Per Dataset 11,305

Composition

Sample or Complete Complete
Missing Data The dataset is entirely self-contained.

Collection

Ethical Review Bias
against people of a specific gender or race in the sitcom “The Big Bang
Theory”. The series and interviews certainly perpetuate these antiquated
beliefs about our society. Stereotypical depictions of both genders are a
significant component of the sitcom.
Author Consent There is no confidential information in our dataset; all the
source documents can be found on the Internet

Cleaning and Labeling

Cleaning Done Yes. We detail data cleaning in Section 3.4 of the paper
Labeling Done Yes. We detail summary writing guidelines in Section 3.2.

Uses and Distribution

Notable Uses MDS is a challenging testbed for multi-modal dialogue
summarization.
Other Uses Probably None

Maintenance and Evolution

Corrections or Erratum The authors are committed to actively monitoring
the usage of the dataset and addressing any issues that may arise.
Methods to Extend Maybe adding more data.

Breakdown 0% of Example*

Short 9,759 items 86.3%
Medium 1,150 items 10.2%
Long 396 items 3.5%

Figure 4: We develop the dataset sheet based on the template from Gebru et al.

https://arxiv.org/abs/1803.09010
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