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Abstract
Research on language technology for the development of medical applications is currently a hot topic in Natural
Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been
adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these
LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and
evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which
typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages.
In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual
corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus
has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain.
Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual
research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and
similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with
current state-of-the-art LLMs in English.
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1. Introduction

As it is the case for many application domains, there
is an increasing interest in applying Artificial In-
telligence (AI) and Natural Language Processing
(NLP) techniques to assist medical experts in their
everyday activities. With this aim in mind, in the
last few years a number of large language models
(LLMs) have been trained or adapted to the medi-
cal domain. These include encoder models such
as SciBERT (Beltagy et al., 2019), BioBERT (Lee
et al., 2020) or PubmedBERT (Gu et al., 2022).
While these models have obtained state-of-the-art
results in discriminative tasks, they are typically
smaller in scale and scope with respect to medical
text-to-text models such as SciFive (Phan et al.,
2021), BioGPT (Luo et al., 2022) Med-PaLM (Sing-
hal et al., 2022), PMC-LLaMA (Wu et al., 2023) or
ClinicalGPT (Wang et al., 2023).

However, the development of all the aforemen-
tioned text-to-text LLMs has been focused on a sin-
gle language, usually English. As a consequence,
there is a lack of high-quality multilingual evalua-
tion benchmarks for the medical domain. Thus,
although there have been efforts to generate eval-
uation data in languages other than English (Wang
et al., 2023; Carrino et al., 2022), they have con-

sisted largely in monolingual approaches.
In order to address these issues, we have com-

piled, to the best of our knowledge, the largest
multilingual corpus for training LLMs adapted to the
medical domain. Our corpus includes 3B words in
four languages, namely, English, Spanish, French,
and Italian. While relatively small when compared
to English existing datasets (Wu et al., 2023), it
allowed us to build Medical mT5, the first open-
source text-to-text multilingual model for the medi-
cal domain.

Medical mT5 is an encoder-decoder model devel-
oped by continuing the training of publicly available
mT5 (Xue et al., 2021) checkpoints on medical
domain data for English, Spanish, French, and Ital-
ian. Additionally, we have also created two new
multilingual sequence labeling (argument compo-
nent detection) and generative question answering
datasets for the evaluation of multilingual LLMs in
the medical domain.

A comprehensive experimental evaluation shows
that Medical mT5 outperforms similarly-sized text-
to-text models for the Spanish, French, and Italian
benchmarks while being competitive in English with
respect to current state-of-the-art text-to-text (Xue
et al., 2021; Chung et al., 2022) and encoder-only
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models (Lee et al., 2020; He et al., 2023). The
results show that continuing pre-training of a mul-
tilingual text-to-text model such as mT5 allows to
successfully adapt it to the medical domain, even
when the amount of domain-specific data is rela-
tively modest (ranging between 1B words for En-
glish and Spanish to 150M in Italian). Summarizing,
the contributions of our work are the following: (i)
the collection of the largest publicly available in-
domain medical multilingual corpus for Spanish,
French, and Italian languages. Together with the
already existing English data, we release a corpus
of 3 billion tokens. 1 (ii) two new datasets for Span-
ish, French, and Italian on Argument Mining2 and
generative Question Answering tasks, generated
taking their original English versions as a starting
point. 3 (iii) the public release of two Medical mT5
versions: a 770M 4 and 3B 5 parameter text-to-text
open-source models which obtain state-of-the-art
results in multilingual sequence labelling for the
medical domain, most notably in multi-task and
zero-shot crosslingual settings.

Other benefits of our Medical mT5 models in-
clude the comparatively low hardware requirements
needed for both fine-tuning on downstream tasks
(the large 770M version easily fits in a 24GB V100
GPU) and for inference (a 12GB GPU should be
enough). As an example, a LLaMA 7B model (Wu
et al., 2023) requires at least a 80GB A100 GPU
using LoRA (Hu et al., 2021) or a more demand-
ing 4 80GB A100 GPUs without it. Code, data,
models, and benchmarks are publicly available to
facilitate reproducibility of results and encourage
future multilingual research on the medical domain.

2. Related Work

As it has been the case in most application do-
mains, Large Language Models (LLMs) have facili-
tated huge improvements in the state-of-the-art for
medical NLP tasks (Singhal et al., 2022; Wu et al.,
2023; Mayer et al., 2021). The most popular ap-
proaches are those that use models pre-trained on
medical corpora such as SciBERT (Beltagy et al.,
2019), BioBERT (Lee et al., 2020), PubmedBERT
(Gu et al., 2022), BSC-BIO (Carrino et al., 2022) or
BioLinkBERT (Yasunaga et al., 2022).

While the previous encoder-only models focused
on discriminative tasks, the emergence of genera-
tive models such as LLaMa (Touvron et al., 2023),

1https://hf.co/datasets/HiTZ/
Multilingual-Medical-Corpus

2https://hf.co/datasets/HiTZ/
multilingual-abstrct

3https://hf.co/datasets/HiTZ/
Multilingual-BioASQ-6B

4https://hf.co/HiTZ/Medical-mT5-large
5https://hf.co/HiTZ/Medical-mT5-xl

PaLM (Singhal et al., 2022) or GPT-3 (Brown et al.,
2020) has resulted in a huge interest in adapting
such LLMs to the medical domain. These models,
to name but a few, include SciFive (Phan et al.,
2021), and English T5 encoder-decoder model
adapted to the scientific domain, and decoder mod-
els such as BioGPT (Luo et al., 2022), Med-PaLM
(Singhal et al., 2022), PMC-LLaMA (Wu et al., 2023)
and ClinicalGPT (Wang et al., 2023).

Additionally, a range of Abstractive Question An-
swering tasks have been proposed as evaluation
benchmarks on which the larger models (Wu et al.,
2023; Singhal et al., 2022; Wang et al., 2023) obtain
best results. While interesting, both these LLMs
and benchmarks have been developed with a focus
on a single language, usually English. Furthermore,
these LLMs require hardware which is simply not
affordable for the large majority of end-users and
researchers. In order to address these issues, we
propose Medical mT5, a multilingual text-to-text
model adapted to the medical domain which, de-
spite its relatively modest size and cheap running
requirements, obtains competitive results, most no-
tably in multi-task and zero-shot cross-lingual set-
tings.

3. Compiling a Multilingual Corpus
for the Medical Domain

Obtaining good quality medical corpora is usually
difficult due to the sensitive nature of the data.
This is even more challenging for non-English lan-
guages, as the availability of data for other lan-
guages is in general more restricted. Despite these
issues, we have successfully gathered and curated
a diverse collection of public relevant corpora of
medical texts in English, French, Italian and Span-
ish to generate the Medical mT5 model.

3.1. English

As listed in Table 1, we collected around 1B words
from three sources related to the medical domain:
(i) ClinicalTrials is a set of documents of clinical
studies from all over the world (National Library of
Medicine, 2022a); (ii) EMEA is an English-Spanish
parallel corpus with documents provided by the
European Medicines Agency (Tiedemann, 2012)
and, (iii) PubMed (National Library of Medicine,
2022b), which contains data from various sources
such as MEDLINE, life science journals and online
books, provides the bulk of the English data.

3.2. Spanish

Apart from EMEA and PubMed, which we also
used for Spanish, the biggest portion of the data

https://hf.co/datasets/HiTZ/Multilingual-Medical-Corpus
https://hf.co/datasets/HiTZ/Multilingual-Medical-Corpus
https://hf.co/datasets/HiTZ/multilingual-abstrct
https://hf.co/datasets/HiTZ/multilingual-abstrct
https://hf.co/datasets/HiTZ/Multilingual-BioASQ-6B
https://hf.co/datasets/HiTZ/Multilingual-BioASQ-6B
https://hf.co/HiTZ/Medical-mT5-large
https://hf.co/HiTZ/Medical-mT5-xl
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Source Words

ClinicalTrials 127.4M
EMEA 12M
PubMed 968.4M

Table 1: English data sources and word counts.

came from the Medical Crawler, a biomedical cor-
pus compiled by Carrino et al. (2022). Additionally,
we also included SPACC (Ander Itxaurrondo, 2018),
UFAL (Institute of Formal and Applied Linguistics,
2017) and WikiMed, a corpus built ad-hoc from
Wikipedia entries. Table 2 provides the details of
the collected data, which amounts to ≈1B words.

Source Words

EMEA 13.6M
PubMed 8.4M
Medical Crawler 918M
SPACC 350K
UFAL 10.5M
WikiMed 5.2M

Table 2: Spanish data sources and word counts.

3.3. French
A total of 7,192,779 sentences and 670,972,717
words were compiled using the data sources listed
in Table 3.

Source Words

PubMed 1.4M
Science Direct 15.2M
Wikipedia - Médecine 5M
EDP 48K
Google Patents 654M

Table 3: French data sources and word counts.

PubMed data was extracted using the
Bio.Entrez package6. Science Direct offers a
collection of scientific and medical publications
which can be extracted via their the official API7.
We filtered relevant articles with the keyword
“Médecine”, and the obtained XML documents
were parsed to extract the <dc:description>
tag. As for Spanish, we took advantage of
Wikipedia as a source of medical knowledge to
obtain HTML formatted data from the category
“Category:Médecine”. The EDP French/English

6https://biopython.org/docs/1.75/api/
Bio.Entrez.html

7https://dev.elsevier.com/

Parallel Medical Corpus (Jimeno-Yepes et al.,
2017) provides bilingual content from journals
that address domains such as dentistry and life
sciences. From this source, we downloaded the
dataset labeled “EDP French corpus, text format”.
Finally, Google Patents is a comprehensive
repository of patent data from around the world.
Google Patents data were retrieved by filtering
using the IPC code and abstract language.

A final French language verification step was
undertaken by applying the langdetect package
(version 1.0.9).

3.4. Italian
The crawling and pre-processing of the Italian split
of the corpus followed the methodology described
by Carrino et al. (2022). First, we compiled a list
of 504 medical terms, which we use as seeds
to scrape the Italian split of the MC4 Common
Crawl Corpus (Common Crawl, 2022) by only se-
lecting the pages which contained at least one
of the keywords in their URL domain. To create
the list, we extracted 600 keyword terms related
to medicine from the Dizionario analogico della
Lingua Italiana (Zanichelli). We excluded some
sectors and discarded terms that may lead to am-
biguous queries (e.g., actions, which contained
mainly verbs, proverbs, general terms like “assis-
tente”, etc.). We normalized rare variants (“bacte-
riologia” to “batteriologia”) and stemmed all terms
without lemmatizing, as most terms are already
lemmatized in the dictionary; we performed univer-
bation of multiword units (e.g., “esamedelleurine”,
“follow-up”), and removed the duplicates. This re-
sulted in a corpus of 67 million tokens, which we
joined with other sources of text such as Medical
dissertations, Drug use instructions, PubMed
abstracts, etc. as detailed in Table 4, resulting in
a ≈145M word corpus.

Source Words

Medical Commoncrawl - IT 67M
Drug instructions 30.5M
Wikipedia - Medicina 13.3M
E3C Corpus - IT 11.6M
Medicine descriptions 6.3M
Medical theses 5.8M
Medical websites 4M
PubMed 2.3M
Supplement description 1.3M
Medical notes 975K
Pathologies 157K
Medical test simulations 26K
Clinical cases 20K

Table 4: Italian data sources and word counts.

https://biopython.org/docs/1.75/api/Bio.Entrez.html
https://biopython.org/docs/1.75/api/Bio.Entrez.html
https://dev.elsevier.com/
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4. Medical mT5

Multilingual T5 (mT5) (Xue et al., 2021) is an exten-
sion of the original T5 (Raffel et al., 2020) frame-
work, which is optimized for multilingual tasks. The
T5 model is grounded in the transformer encoder-
decoder architecture (Vaswani et al., 2017). With
its decoder block, T5 is capable of generating se-
quences of tokens in an auto-regressive fashion.
T5 was designed to convert every NLP problem into
a text-to-text task, and mT5 extends this strategy
to a multitude of languages, leveraging a shared
vocabulary for diverse scripts. mT5 was trained us-
ing mC4, a 1 Trillion token Common Crawl-based
dataset covering 101 languages. The pre-training
is based on a masked language modeling “span-
corruption” objective, where consecutive spans of
input tokens are replaced with a mask and the
model is trained to reconstruct the masked-out to-
kens.

4.1. Pre-training Medical mT5
Medical mT5 is built upon the same architecture as
mT5 (Xue et al., 2021). We release two diffent mod-
els: Medical-mT5-large (738M parameters) and
Medical-mT5-xl (3 billion parameters). Both mod-
els were initialized using the pre-trained weights of
their corresponding mT5 checkpoints and contin-
ued their pre-training using the 3B word medical
domain dataset described in Section 3 (with x2 over-
sampling for the Italian split). To prevent over-fitting,
we run the training for only one epoch, as prelim-
inary experiments showed that performance de-
graded with more epochs. We adhered to the self-
supervised parameter settings recommended by
Xue et al. (2021) and detailed in Table 5. It should
be noted that Medical-mT5-large was trained with a
sequence length of 1024 tokens whereas Medical-
mT5-xl was limited to a sequence length of 480
tokens due to GPU memory limitations. Medical
mT5 was trained using the Flax implementation
of mT5 in the Hugging Face transformers library
(Wolf et al., 2020). All experiments were conducted
on our private servers, employing 4xA100 80GB
GPUs. We made calculations for a carbon footprint
estimation based on a 400W consumption per GPU
and a carbon intensity of 0.171 kg/kWh8.

5. Generating New Multilingual
Benchmarks

The lack of multilingual evaluation benchmarks
for the medical domain motivated us to generate
new evaluation data for our languages of interest,
as only the relatively small E3C (Magnini et al.,

8Sourced from https://app.electricitymaps.
com/map

Medical-mT5-large Medical-mT5-xl

Param. no. 738M 3B
Sequence Lenght 1024 480
Token/step 65536 30720
Epochs 1 1
Total Tokens 4.5B 4.5B
Optimizer Adafactor Adafactor
LR 0.001 0.001
Scheduler Constant Constant
Hardware 4xA100 4xA100
Time (h) 10.5 20.5
CO2eq (kg) 2.9 5.6

Table 5: Pre-Training settings for Medical mT5.

2021) was already available for all 4 languages.
We focused on two different types of tasks: (i) a
sequence labelling task, Argument Mining, con-
sisting in detecting and classifying the argument
component spans and their relations, (ii) Abstrac-
tive Question Answering, where the model is ex-
pected to generate an answer in response to an
input question. In both cases we took existing En-
glish labelled data as a starting point.

5.1. Argument Mining
The AbstRCT dataset is composed by English med-
ical and scientific texts collected from the MEDLINE
database and manually annotated with two types
of argument components: Claims and Premises
(Mayer et al., 2021).

A ‘claim’ is a concluding statement made by the
author about the outcome of the study. In the medi-
cal domain it may be an assertion of a diagnosis or
a treatment. A ‘premise’ corresponds to an obser-
vation or measurement in the study (ground truth),
which supports or attacks another argument com-
ponent, usually a claim. It is important that they are
observed facts, therefore, credible without further
evidence.

We generated French and Italian parallel ver-
sions of the dataset using the same method as
for Spanish, based on machine translation and
semi-manual annotation projection (Yeginbergen-
ova and Agerri, 2023). The AbstRCT dataset is
divided in three splits, neoplasm, glaucoma and
mixed. Following previous work, we fine-tune the
models with the first one and then evaluate the
in-domain performance on the neoplasm test split
and the cross-domain performance on the glau-
coma and mixed splits. Previous works using the
AbstRCT datasets have employed different defini-
tions of the F1 score metric, such as token-level
F1 (Mayer et al., 2021; Yeginbergenova and Agerri,
2023). However, in this paper we report results
using the standard sequence level F1 score (Tjong
Kim Sang and De Meulder, 2003), a much more
strict metric, which explains the lower results for all

https://app.electricitymaps.com/map
https://app.electricitymaps.com/map
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Representation Task Dataset Languages Entity Type

NCBI-Disease (Dogan et al., 2014) EN Disease
BC5CDR Disease (Li et al., 2016) EN Disease
BC5CDR Chemical (Li et al., 2016) EN Chemical

DIANN (Fabregat et al., 2018) EN, ES Disability
E3C (Magnini et al., 2021) EN, ES, FR, IT Clinical Entity

Named Entity
Recognition

PharmaCoNER (Gonzalez-Agirre et al., 2019) ES Pharmacological

Sequence
Labelling

Argument
Mining AbstRCT (Mayer et al., 2021) EN, ES, FR, IT Claims and Premises

Generative
Question Answering

Question
Answering BioASQ 6B (Tsatsaronis et al., 2015) EN, ES, FR, IT Biomedical QA

Table 6: List of evaluation tasks used to measure the performance of Medical mT5.

Patient with dilated cardiomyopathy .

Patient with dilated <Disease> cardiomyopathy </Disease>.

Figure 1: Text-to-Text representation of the Se-
quence Labeling task. Given an input sentence,
the model is expected to generate the same sen-
tence annotated with html-style tags.

the models.

5.2. Question Answering
We use the BioASQ-6B English Question Answer-
ing dataset (Tsatsaronis et al., 2015) to gener-
ate parallel French, Italian and Spanish versions.
Given a biomedical question and a set of snippets
of text with relevant information about the question,
the model must generate the ideal answer. A set of
ideal gold answers are provided to assess the per-
formance of the models. We machine translated
the questions and ideal answers into French, Ital-
ian and Spanish using the NLLB200 3B parameter
model (Costa-jussà et al., 2022).

6. Experimental Setup

Medical mT5 is a text-to-text model. This means
that, given a text input, it learns to generate a text
as output. Therefore, every evaluation task must
be converted into a text-to-text format (Xue et al.,
2021). In our experiments the output text is always
generated using beam search with 4 beams.

The list of tasks used for evaluation is listed in
Table 6. The Sequence Labelling tasks include
medical NER, detecting and classifying named enti-
ties according to some pre-defined categories, and
Argument Mining, described in Section 5. Perfor-
mance for every sequence labelling task is evalu-
ated using standard sequence level F1 score (Tjong
Kim Sang and De Meulder, 2003).

question: Describe mechanism of action of
Napabucasin. context: Napabucasin (BBI608) is an orally

administered small [...]. The STAT3 transcription factor inhibitor,
BBI608 [..]

Napabucasin (BBI608) is an orally administered small molecule
that blocks stem cell activity in cancer cells by targeting the signal

transducer and activator of transcription 3 (STAT3) pathway

Question 

snippet 1 snippet 2

Figure 2: Text-to-Text representation of the BioASQ
task. Given a question and a set of relevant snip-
pets, the model generates an answer.

In order to address sequence labelling tasks, text-
to-text models such as Medical mT5 are prompted
with the sentence to label. As illustrated in Figure
1, the expected output is the same sentence an-
notated with HTML-style tags. The HTML tags for
each task are added as special tokens to the model
vocabulary. Furthermore, we use constrained de-
coding to ensure that the output contains the same
words as the input and a valid HTML annotation.
We use the Sequence Labeling with LLMs9 library.

With respect to the BioASQ Abstractive Ques-
tion Answering task, the input prompt contains
the question and a context. As shown in Figure 2,
the context is generated by concatenating all the
provided possible snippets. The expected output
should be the generated answer to the question,
which is then compared to the gold ideal answer.

6.1. Baselines
As we have developed Medical mT5 by continuing
the training of mT5 checkpoints, our primary point
of comparison should be mT5 (Xue et al., 2021).
Thus, our first objective is to assess whether train-
ing the model on our multilingual medical-domain

9https://github.com/ikergarcia1996/
Sequence-Labeling-LLMs

https://github.com/ikergarcia1996/Sequence-Labeling-LLMs
https://github.com/ikergarcia1996/Sequence-Labeling-LLMs
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Lang Dataset mT5large mT5XL SciFive FlanT5large FlanT5XL mDeBERTaV3 base BioBERT MedMT5large MedMT5XL

EN NCBI-Disease 85.1 87.7 89.4 88.6 89.3 85.7 87.4 89.1 87.2

EN BC5CDR Disease 78.5 81.4 85.4 85.0 85.8 82.5 84.3 84.4 82.4
EN BC5CDR Chemical 89.1 90.8 93.3 92.0 92.9 91.1 92.9 92.8 91.3

EN DIANN 70.1 77.8 71.9 74.4 74.2 80.3 79.0 74.8 77.6
ES DIANN 72.4 74.9 70.5 70.7 70.9 78.3 70.2 74.9 74.8

EN E3C 54.3 60.1 62.8 64.2 63.1 58.2 58.6 59.4 57.9
ES E3C 61.6 71.7 62.7 64.4 67.1 65.9 57.4 72.2 69.5
FR E3C 55.6 64.9 61.7 65.2 64.3 62.0 53.3 65.2 65.8
IT E3C 61.8 63.8 59.6 61.9 65.1 63.9 52.1 67.5 65.9

ES PharmaCoNER 86.3 90.6 87.5 88.5 89.1 89.4 88.6 90.8 90.1

EN Neoplasm 70.4 71.1 74.4 74.3 73.4 64.5 67.5 73.9 73.2
EN Glaucoma 70.7 75.1 77.1 78.4 78.0 71.2 74.8 76.2 76.4
EN Mixed 68.5 73.0 73.4 73.2 74.5 63.4 69.6 72.2 72.0
ES Neoplasm 69.0 56.1 71.4 72.5 73.9 63.0 57.1 72.1 71.8
ES Glaucoma 69.3 70.7 73.9 73.8 75.2 68.6 64.5 77.1 75.5
ES Mixed 68.4 66.2 69.2 69.3 71.6 61.3 58.9 72.4 71.4
FR Neoplasm 70.5 66.6 74.0 72.4 73.7 63.9 59.0 72.9 71.2
FR Glaucoma 71.1 69.2 77.8 74.8 77.2 60.3 65.6 79.5 75.8
FR Mixed 68.3 65.4 72.0 70.9 74.3 64.1 61.3 73.3 69.7
IT Neoplasm 68.1 69.9 70.1 70.9 72.0 64.4 54.8 71.2 73.1
IT Glaucoma 69.2 71.5 73.7 74.0 75.9 74.7 65.8 75.7 78.7
IT Mixed 66.3 67.7 67.4 69.9 70.0 61.3 57.4 70.6 71.9

AVERAGE 70.2 72.1 73.6 74.1 75.1 69.9 67.3 75.4 74.7
AVERAGE ES, FR, IT 68.4 69.2 70.8 71.4 72.9 67.2 61.9 74.0 73.2

Table 7: Single-task supervised F1 scores for Sequence Labelling.

corpus enhances its performance for tasks specific
to this domain. Furthermore, we also benchmark
our model against SciFive (Pubmed+PMC) a T5-
based 738M parameter model (Phan et al., 2021)
trained exclusively on a corpus of 78B words con-
taining scientific and medical English data. Addi-
tionally, we compare the performance of Medical
mT5 with Flan-T5 (Chung et al., 2022), which also
adopts the T5 architecture but has been finetuned
on a huge instruction-following dataset for almost
2K tasks. Flan-T5 achieves state-of-the-art perfor-
mance in numerous benchmarks, including some
from the medical domain (Singhal et al., 2022). We
tested all three types of text-to-text models under
identical settings and hyperparameters.

We also measure Medical mT5 with the perfor-
mance of encoder-only models in sequence la-
belling tasks. We report results with mDeBERTaV3
(He et al., 2023) which is widely used for sequence
labeling and excels in multilingual tasks (Adelani
et al., 2022; Agerri and Agirre, 2023). Although we
also tested XLM-RoBERTa (Conneau et al., 2020)
and GLOT500 (Imani et al., 2023), their results
were worse than those obtained by mDeBERTaV3.
Finally, we also compare with BioBERT v1.1 (Lee
et al., 2020), which has been pretrained on a large
English-only biomedical dataset. We do not eval-
uate the performance of encoder-only models in
the question answering task, as their architecture
is not designed for text generation.

The specific hyperparameter settings used to
fine-tune the models will be available in the Ap-
pendix upon publication.

7. Experimental Results

In this section, we report on the performance of
Medical mT5 and of the baselines in the sequence
labelling tasks across different settings. Due to
space constraints, we only report the best perform-
ing results.

Single Task Monolingual Supervised Results:
The results when fine-tuning and evaluating the
models for each dataset and language are shown
in Table 7. The first observation is that Medical-
mT5-large significantly outperforms both mT5-large
and mT5-XL, demonstrating the benefits of further
training these models with our multilingual medical
domain corpus.

When comparing Medical mT5 with FlanT5 and
SciFive, the latter models are systematically supe-
rior on English. This was anticipated since both
have been pre-trained with a much larger amount
of English-only data specific to the medical domain.
With respect to encoder-only models, they achieve
in general worse results than text-to-text models
across all tasks and languages (except for the DI-
ANN dataset). It is also noteworthy that FlanT5-XL
exhibits robust performance across all datasets
and languages, even though it was fine-tuned with
English-only data not specific to the medical do-
main. Nonetheless, Medical-mT5-large obtains in
general better results for French, Spanish and Ital-
ian while being much smaller in size (738M param-
eters vs 3B parameters), showing the impact of
training Medical mT5 with domain-specific data for
those languages.



11171

Lang Dataset Single Task MultiTask
FlanT5XL MedMT5large MedMT5XL FlanT5XL MedMT5large MedMT5XL

EN NCBI-Disease 89.3 89.1 87.2 87.6 87.6 86.9

EN BC5CDR Disease 85.8 84.4 82.4 85.1 83.4 83.0
EN BC5CDR Chemical 92.9 92.8 91.3 92.7 92.5 91.6

EN DIANN 74.2 74.8 77.6 80.0 75.4 75.3
ES DIANN 70.9 74.9 74.8 77.1 72.6 73.6

EN E3C 63.1 59.4 57.9 62.1 60.9 62.0
ES E3C 67.1 72.2 69.5 66.5 74.9 73.3
FR E3C 64.3 65.2 65.8 62.9 65.4 65.1
IT E3C 65.1 67.5 65.9 60.7 66.9 65.1

ES PharmaCoNER 89.1 90.8 90.1 89.9 90.3 89.5

EN Neoplasm 73.4 73.9 73.2 73.1 72.3 72.9
EN Glaucoma 78.0 76.2 76.4 76.4 76.8 77.5
EN Mixed 74.5 72.2 72.0 71.5 70.9 73.0
ES Neoplasm 73.9 72.1 71.8 73.5 73.5 73.7
ES Glaucoma 75.2 77.1 75.5 77.1 77.7 79.3
ES Mixed 71.6 72.4 71.4 70.0 71.8 72.8
FR Neoplasm 73.7 72.9 71.2 74.0 72.9 73.6
FR Glaucoma 77.2 79.5 75.8 76.6 77.0 79.4
FR Mixed 74.3 73.3 69.7 71.8 71.2 73.0
IT Neoplasm 72.0 71.2 73.1 71.9 74.6 74.0
IT Glaucoma 75.9 75.7 78.7 77.6 78.5 78.9
IT Mixed 70.0 70.6 71.9 69.9 72.5 73.3

AVERAGE 75.1 75.4 74.7 75.2 76.2 76.7
AVERAGE ES, FR, IT 72.9 74.0 73.2 73.1 74.8 75.3

Table 8: Multi-task supervised F1 scores for Sequence Labelling.

Multi-Task Supervised Results: Text-to-text
models have demonstrated improved performance
when trained in multi-task settings (Chung et al.,
2022). Following this, we also experimented with
fine-tuning them across all the sequence labeling
tasks simultaneously. To inform the model about
which labels should classify for each input exam-
ple, we add the list of predefined labels from the
corresponding dataset to the beginning of the input
sentence. For instance, the input depicted in Figure
1 is adjusted to “<Disease> Patient with dilated car-
diomyopathy”. A comparison of the Single Task and
Multi-Task settings is presented in Table 8. It can
be seen that in this setting Medical mT5 achieves
the best overall results for Spanish, French and
Italian. On average, Medical-mT5-xl also obtains
the best performance, slightly improving over the
results of FlanT5-XL and Medical-mT5-large.

Zero-shot Cross-Lingual Transfer Results:
Manually annotated medical domain datasets for
languages other than English are scarce. There-
fore, developing models that can successfully gen-
erate predictions for languages different to those
used for fine-tuning is crucial. We evaluate this
ability to perform zero-shot cross-lingual transfer
by fine-tuning Medical mT5 and the baselines on
the English AbsRCT Neoplasm dataset, and then
evaluating them on the Neoplasm, Glaucoma, and
Mixed datasets for Spanish, French, and Italian.
The results are presented in Table 9. Results show
that Medical mT5 outperforms any other model.

Moreover, Medical-mT5-xl achieves significantly
better results than Medical-mT5-large.

To summarize, Medical mT5 stands out for its
superior performance in the evaluation for Span-
ish, French, and Italian languages, especially for
the multitask and the zero-shot transfer settings.
These capabilities can help mitigate the scarcity of
manually annotated medical data for other target
languages. In contrast, SciFive and FlanT5, having
been trained on extensive English-only datasets,
emerge as the top choices when the primary focus
is on English-only tasks.

Finally, despite Medical-mT5-xl being larger than
Medical-mT5-large (3B vs 738M), its performance
is worse in the single-task evaluation setting. This
behaviour is not observed in the multi-task and
zero-shot experiments, leading us to hypothesize
that the larger Medical-mT5-xl model is more prone
to overfit in the single-task supervised setting.

7.1. Abstractive Question Answering

In this section, we explore the text generation ca-
pabilities of Medical mT5 and other baseline text-
to-text models on the BioASQ question answering
dataset described in Section 5.2. Previous work
typically evaluate the performance on this task us-
ing the ROUGE score (Tsatsaronis et al., 2015) to
compare the gold standard answer with the answer
generated by the model. However, we find this
metric inadequate for medical domain tasks as it
does not address crucial aspects of the generation
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Lang Dataset mT5XL SciFive FlanT5XL mDeBERTaV3 base MedMT5large MedMT5XL

ES Neoplasm 71.4 69.8 67.9 65.1 72.4 71.7
ES Glaucoma 74.1 71.5 70.6 68.3 72.4 73.2
ES Mixed 69.4 67.0 66.7 60.9 68.1 68.8
FR Neoplasm 71.6 68.6 69.9 60.5 72.4 72.8
FR Glaucoma 75.8 74.5 71.0 68.7 72.3 76.7
FR Mixed 73.0 68.5 68.2 59.3 70.4 72.4
IT Neoplasm 70.6 63.1 67.3 62.4 72.9 73.2
IT Glaucoma 76.7 71.6 72.0 70.2 75.4 79.0
IT Mixed 69.9 62.5 66.9 62.1 71.7 71.9

AVERAGE 72.5 68.6 69.0 64.2 72.0 73.3

Table 9: Zero-shot F1 scores for Argument Mining. Models have been trained in English and evaluated in
Spanish, French and Italian.

Ideal Answer Which type of urinary incontinence is diagnosed with the Q tip test? Stress urinary incontinence is
diagnosed with the Q tip test. The test evaluates urethral mobility.

mT5-large Q-tip test is used for urodynamic assessment of patients with severe urinary incontinence.
FlanT5-large The Q tip test is used for assessing urethral mobility.
SciFive Q tip test is used for evaluation of stress urinary incontinence.
MedMT5-large Q-tip test is used for evaluation of stress urinary incontinence.

Ideal Answer Which are the main manifestations of Ohdo syndrome? Severe ID, absent or deficient language, skeletal
manifestations including bilateral patella dislocations.

mT5-large Skeletal manifestations in Ohdo syndrome are a case with bilateral patella dislocations where surgical
intervention has been indicated.

FlanT5-large The main manifestations of Ohdo syndrome are: 1) severe ID, 2) absent or deficient language and 3)
milder, clinical manifestation in heterozygotes.

SciFive Ohdo syndrome is characterized by severe ID, absent or deficient language and, milder, clinical manifes-
tation in heterozygotes.

MedMT5-large The main manifestations of Ohdo syndrome are: 1) absent or deficient language and 2) mildder clinical
manifestation in heterozygotes.

Table 10: Examples of answers generated by each model for two different BioASQ questions together
with the rank assigned by medics.

such as factuality, potential harm, and bias (Singhal
et al., 2022). Consequently, we enlisted medical
professionals to analyze the answers produced by
the models.

During annotation, medical doctors were dis-
played the question, the ideal gold answers and
the answers generated by each model. If required,
they could also inspect the snippets that provide
context to answer each of the questions. We nar-
rowed the evaluation to Medical-mT5-large, mT5-
large, FlanT5-large and SciFive. The evaluation
was conducted by medical doctors proficient/native
speakers of English, French and Spanish. For each
question, doctors were asked to rank the answers
generated by the models as the best, second-best,
third-best, and worst answer.

Two Spanish medical doctors proficient or native
in English and Spanish analyzed 50 English exam-
ples and 252 Spanish. For the French language, 3
French clinicians analyzed 186 answers, of which
47 were done by 2 doctors to calculate IAA (Co-
hen’s Kappa Score: 0.28 and Average Spearman’s
Rank Correlation: 0.48), which indicates a low level
of agreement. This exercise provided interesting
insights with respect to the performance of the mod-
els in text generation tasks in the medical domain.

First, medical doctors could not in general estab-
lish significant differences between the answers
generated by each of the models; predictions were
far too similar, and all tended to fail on the same
questions. As an example, Table 10 shows the
answers to two different questions. As it can be
observed, the answers generated by each model
are very similar, and the doctors ended up ranking
them primarily based on style.

The final result of the manual analysis is that all
the models were chosen a similar number of times
as the best. We believe that this demonstrates the
difficulty of performing and obtaining meaningful
evaluation results for this kind of tasks on this spe-
cific domain. This is in fact supported by the low
IAA agreement obtained in the French annotation.
This issue has also emerged in prior research and
was partially addressed by employing a very large
number of experts and asking them to respond with
a yes/no to a set of predefined potential issues in
the model output (Singhal et al., 2022). Still, the
variance on the answers provided by the experts
was significant.

However, there could be other underlying rea-
sons for this behaviour. First, perhaps the T5 ar-
chitecture is not ideally suited for text generation
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as formulated in the BioASQ task, as these mod-
els are trained on a masking reconstruction ob-
jective rather than on direct text generation tasks.
Consequently, the knowledge acquired during pre-
training might not generalize well when the models
are subsequently trained for text generation pur-
poses. Second, perhaps using much larger models
such as MedPaLM (Singhal et al., 2022) may gener-
ate better answer generation, but models of 540B
parameters are currently unusable for the large
majority of the NLP research labs, including ours.
Nonetheless, it should be stressed that research
on appropriate evaluation metrics for these tasks
is still a difficult challenge which requires further
investigation.

In any case, our results demonstrate the poten-
tial of a text-to-text model such as Medical mT5
for multilingual sequence labelling in the medical
domain, establishing new state-of-the-art results in
the multi-task and zero-shot cross-lingual settings.

8. Conclusion

In this paper we have presented Medical mT5, the
first open source multilingual text-to-text LLM for
the medical domain. Its development has required
the compilation of a new 3B word corpus in English,
French, Italian and Spanish specific to the medi-
cal domain. Furthermore, motivated by the lack of
multilingual benchmarks, we have generated eval-
uation benchmarks for French, Italian and Spanish
for Argument Mining and Abstractive Question An-
swering.

With respect to the languages chosen in this pa-
per, we would like to comment that acquiring medi-
cal domain data is extremely challenging, even for
languages such as the ones included. Furthermore,
the choice of languages was also influenced by the
availability of native medical doctors to do the man-
ual evaluation for Abstractive Question Answering.
In any case, we hope that our paper will encour-
age more researchers to join our effort and gather
data for their respective languages, thereby cre-
ating larger, multilingual medical domain datasets
encompassing more languages in the future.

A comprehensive experimentation on sequence
labelling tasks shows that Medical mT5 outper-
forms strong text-to-text baselines of similarly-sized
models in the multi-task and zero-shot cross-lingual
evaluation settings. This is particularly interesting
as these settings fully exploit the multilingual nature
of a text-to-text model such as Medical mT5.

Furthermore, our experiments on Abstractive
Question Answering show the inherent difficulty
of evaluating generative tasks for this specific do-
main, where complex issues such as truthfulness
and veracity are difficult to capture by automatic
metrics. Manual evaluation is not ideal either, as

medical doctors were not able to clearly distinguish
between the quality of the answers generated by
the different models. In line with previous work
(Singhal et al., 2022), we hope our paper will bring
further attention to this problem and encourage
further research on evaluation methods.
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