
LREC-COLING 2024, pages 11187–11195
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

11187

MemoryPrompt: A Light Wrapper to Improve Context Tracking in
Pre-trained Language Models

Nathanaël Carraz Rakotonirina1, Marco Baroni1,2
1Universitat Pompeu Fabra, Barcelona, Spain

2ICREA, Barcelona, Spain
{nathanael.rakotonirina, marco.baroni}@upf.edu

Abstract
Transformer-based language models (LMs) track contextual information through large, hard-coded input windows.
We introduce MemoryPrompt, a leaner approach in which the LM is complemented by a small auxiliary recurrent
network that passes information to the LM by prefixing its regular input with a sequence of vectors, akin to soft
prompts, without requiring LM finetuning. Tested on a task designed to probe a LM’s ability to keep track of multiple
fact updates, a MemoryPrompt-augmented LM outperforms much larger LMs that have access to the full input
history. We also test MemoryPrompt on a long-distance dialogue dataset, where its performance is comparable to
that of a model conditioned on the entire conversation history. In both experiments we also observe that, unlike
full-finetuning approaches, MemoryPrompt does not suffer from catastrophic forgetting when adapted to new tasks,
thus not disrupting the generalist capabilities of the underlying LM.

Keywords: memory-augmented language model, prompting

1. Introduction

Transformer-based language models (LMs) can
only track user-provided contextual information if
it fits into their context window. The brute-force
solution of using a huge window suffers obvious
problems of scale. While there is promising work in
the direction of making long contexts more compu-
tationally efficient (Dai et al., 2019; Beltagy et al.,
2020; Chen et al., 2023), we introduce Memo-
ryPrompt, a cheaper and complementary solution
that augments a pre-trained LM with a smaller aux-
iliary recurrent network, trained to carry context-
relevant information through time. Inspired by
work on “soft prompting” (Lester et al., 2021; Liu
et al., 2021; Zhong et al., 2021), this information
is passed to the LM at each time step as a con-
tinuous token prefixed to its regular input. Our
method does not architecturally alter or finetune
the underlying pre-trained LM, and it can thus lever-
age any available pre-implemented model. Mem-
ory augmentation is moreover unobtrusive, in the
sense that it does not greatly affect the underly-
ing LM behaviour in standard next-token predic-
tion tasks, and thus the augmented model can
successfully manage contextually-driven updates,
while preserving the knowledge encoded in the
underlying LM.1

1The code and data to reproduce our analy-
sis is available at https://github.com/ncarraz/
MemoryPrompt.

2. Related work

Methods to enhance a sequence processing net-
work with an external differentiable memory have
been explored since the comeback of neural net-
works during the last decade (e.g., Joulin and
Mikolov, 2015; Sukhbaatar et al., 2015; Graves
et al., 2016).

After the advent of the Transformer (Vaswani
et al., 2017), much work on long-range memory
has focused on how to make its attention mech-
anisms more efficient, in order to handle a larger
span (e.g., Dai et al., 2019; Beltagy et al., 2020).
Similarly to us, Fan et al. (2020) and Hutchins et al.
(2022) introduce a recurrence to allow the Trans-
former to carry information through time steps, but
they do it by modifying the core Transformer archi-
tecture.

The idea of using a differentiable external mem-
ory has also made a comeback in the context of
Transformer-based language models. A recent
example is the Memformer architecture of Wu
et al. (2022). Like in our approach, Memformer
has an external memory component that interacts
with a Transformer via reading and writing oper-
ations. However, this approach demands archi-
tectural changes to the Transformer, special read-
ing/writing operations and end-to-end training of
the memory and the underlying Transformer, pre-
venting its use with pre-trained LMs.

The closest approach to ours is the recently in-
troduced Recurrent Memory Transformer (RMT)
model of Bulatov et al. (2022) (see also Bulatov
et al., 2023). They divide the input into segments,
and add the same real-valued memory vectors

https://github.com/ncarraz/MemoryPrompt
https://github.com/ncarraz/MemoryPrompt


11188

Figure 1: Unfolded graph of MemoryPrompt at training time. The input is divided into segments and, for
each segment, the augmented system produces both the LM output and the memory vectors (blue) which
are concatenated to the embeddings of the next segment.

both at the beginning and at the end of the seg-
ment. Then, the activations of the memory vectors
added at the end of the segment form the memory
vectors of the next segment in a recurrent man-
ner. The key difference between RMT and our
approach is that we use a lightweight module to
produce the memory vectors and keep our base
model frozen, updating only the parameters of the
module. As we will show below, this is crucial to
prevent catastrophic forgetting of the knowledge
that was originally encoded in the base model.

Our idea of passing information to the Trans-
former in the form of continuous tokens fed to its
standard input comes from the literature on soft
prompting (e.g., Lester et al., 2021; Li and Liang,
2021; Liu et al., 2021; Zhong et al., 2021), where
sequences of vectors living in the target LM’s em-
bedding space are prefixed to task-specific inputs,
to implicitly adapt the model to the task without
fine-tuning. We extend continuous prompts to a
setup where, instead of a fixed prefix, a dynamic
one must be generated at each step, in order to
carry constantly updated information.

3. The MemoryPrompt model

We augment an autoregressive language model
with a recurrent memory module, allowing it to
extend its effective context-length and to keep track
of information updated through time.

The input is divided into segments that are se-
quentially processed by the model. For each seg-
ment, the contextual representation of the last to-
ken is fed as input to the memory module which
is composed of an MLP followed by an LSTM
(Hochreiter and Schmidhuber, 1997). The output
of the memory module is a series of memory vec-
tors P ∈ Rm×e, where e is the word embedding
space and m is the number of vectors.

The augmented system is trained end-to-end

Algorithm 1: Forward flow of Memo-
ryPrompt for a single input
Hyperparameters :number of memory vectors m

number of blocks B
1 Initialize the hidden state h and cell state c
2 Segment the input into B blocks of n tokens

X = {X1, ...,XB}
3 Embed the input X to get E = {E1, ...,EB}

where Ei ∈ Rn×e

4 Get the activations before the last linear layer
A = LMϕ(E1) where A ∈ Rn×e

5 Compute the memory vectors from the
activations of the last token
p,h, c = LSTMθ(MLPθ(A[−1, :]),h, c) where
p ∈ Rme

6 Reshape p into the matrix P ∈ Rm×e

7 Get the probabilities over the vocabulary using
the last linear layer O = Softmax(AWϕ) where
Wϕ ∈ Re×V

8 for b = 2 to B do
9 Concatenate the memory vectors to the

embedding before feeding to the model
A = LMϕ([P;Eb]) where
[P;Eb] ∈ R(m+n)×e

10 Compute the next memory vectors, hidden
state and cell state
p,h, c = LSTMθ(MLPθ(A[−1, :]),h, c)

11 Reshape p into the matrix P
12 Get the probabilities over the vocabulary

O = Softmax(AWϕ)
13 end

with backpropagation through time (see Figure 1),
but only the parameters of the memory module
are updated: the LM components are kept frozen.
Algorithm 1 illustrates the forward process of Mem-
oryPrompt in detail.



11189

4. Experimental setup

4.1. Datasets

Fact updating We simulate a scenario in which
the model is exposed to realistic fact updates that
it needs to track. We use sequences of facts gath-
ered from the version of TREx (Elsahar et al., 2018)
curated by Elazar et al. (2021). Each fact is rep-
resented as a triple ⟨subject, relation, object⟩—for
example, ⟨Antim Peak, continent,Antarctica⟩. As
this example shows, not all facts can be plau-
sibly updated. We thus identified 3 mutable re-
lations, for which an update would be credible,
namely employer (Paul Allen/Microsoft), position
held (Otto Suhr /mayor ) and work location (Lucio
Fontana/Milan). These were updated by randomly
selecting other objects from the same TREx re-
lation pool (e.g., Paul Allen’s employer might be
randomly updated to Apple or BBC). We used the
remaining 36 relations to generate stable facts that
are not updated. Each fact is instantiated as a
natural-language statement using a template from
Elazar et al. (2021) (e.g., the template for the em-
ployer relation is [subject] works for [object]).

A sequence in the dataset is composed of multi-
ple statements. A statement can either introduce a
new fact or update a previously introduced mutable
fact. The model is asked to predict the most up-to-
date object of a single mutable fact called the pivot
fact. The other mutable facts in the sequence, that
can also be updated, are called distractors. Note
that a statement can pertain to a pivot fact, to an-
other mutable fact (a distractor), or to a stable fact.
Nothing distinguishes pivots from distractors, so a
model must be able to track updates to both fact
types.

An example sequence is shown in Figure 2. We
generate different versions of the fact-updating
dataset as shown in Table 1. Each dataset contains
26,892 sequences for training, 150 for validation
and 346 for testing. The number of examples in the
validation and test sets is limited by the number of
mutable facts in TREx. For training, we could gen-
erate an arbitrarily large number of sequences by
randomly selecting objects. However, performing
this augmentation on validation or test data does
not affect the final performance; hence the smaller
size of the latter splits.

Note that, while the datasets are automati-
cally generated, they contain plausible statements
and updates expressed in natural language, and
one could easily imagine concrete scenarios in
which similar fact streams arise (e.g., processing a
stream of messages from a news agency).

Multi-Session Chat (MSC) We also test Memo-
ryPrompt in the less-constrained scenario of long-
distance language modeling on the MSC dataset

(Xu et al., 2021). This is a long-term conversa-
tion dataset which consists of multi-session crowd-
worker chats, where the speakers might refer to
their whole shared history. The dataset contains
35,880 training dialogues, 5,000 validation exam-
ples and 5,008 test cases.

4.2. Models

The MemoryPrompt memory module consists of
a 1-layer 1024-dimensional MLP followed by a 1-
layer LSTM. We use 5 memory vectors. We use
LMs from the OPT family (Zhang et al., 2022). For
reference, our MemoryPrompt configuration adds
about 10% new parameters to OPT-350M. Since
the number of parameters of the memory module
only depends on the embedding dimension of the
base model, this ratio decreases as the base model
gets larger. Due to computational limitations, and
because we are interested in external memories
as an alternative to scaling up models, we only
applied MemoryPrompt and RMT to OPT-125M
and OPT-350M.

We compare the following setups. The LM-full-
context setting involves an OPT LM that takes
a whole fact-updating dataset sequence or MSC
conversation history as input. In the LM + Memo-
ryPrompt setup, the input sequence is segmented
into blocks that are separately processed by the
model. Each block contains 5 facts for the short
fact-updating datasets, 10 for the long ones, and
a turn for MSC. Only the parameters of the mem-
ory module are updated. LM-finetuned + RMT is
our re-implementation of RMT, the memory-based
approach of Bulatov et al. (2022), which adds the
same memory vectors both at the beginning and
at the end of a segment when, as in our case, it is
applied to decoder-only models. The activations of
the memory vectors added at the end of the seg-
ment form the vectors for the next segment. The
LM is finetuned to produce those vectors without
resorting to a separate module. The input and the
number of memory vectors are the same as for
MemoryPrompt.

4.3. Training setup

We train the models using the AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 7e-5 (7e-6 for the MSC dataset) and weight de-
cay of 0.1, without hyperparameter tuning. We fol-
low a linear learning rate schedule for MSC, warm-
ing up from 0 to the maximum learning rate over
the first 12,000 steps. We clip gradient norms at
1.0 to avoid exploding gradients for MSC. More-
over, we apply L2 regularization to the memory
vectors, as we informally observed this to mitigate
catastrophic forgetting.



11190

Figure 2: Sequence from the short-fd dataset (see Table 1). Non-highlighted text contains stable facts.
The pivot (in blue) is the mutable fact to track, and the final answer is the most up-to-date object of the
pivot. Distractors (in orange) are mutable facts distinct form the pivot, which might belong to the same
relation and might be updated (here, the object associated with Guido Pepoli is updated from cardinal to
bishop).

Dataset no.
statements

no.
distractors

no.
updates

short no distractors (nd) [10 . . 30] 0 [0 . . 4]
short few distractors (fd) [10 . . 30] [3 . . 7] [0 . . 4]
long no distractors (nd) [150 . . 190] 0 [0 . . 9]
long few distractors (fd) [150 . . 190] [3 . . 10] [0 . . 9]
long many distractors (md) [150 . . 190] [25 . . 50] [0 . . 9]
long many updates (mu) [150 . . 190] [3 . . 10] [0 . . 49]

Table 1: Different fact-updating dataset configurations. Datasets are generated using three parameters
whose values are specified by ranges: the number of statements, the number of distractors and the
number of updates to the pivot fact. When generating a sequence, the value of each parameter is
randomly selected within the corresponding range. The positions of the pivot and the distractors are also
randomly selected.

In the fact-updating experiments, during training
and evaluation we provide the models with demon-
strations using facts from the same relation as the
pivot. MemoryPrompt is robust to the number of
demonstrations. In our experiments, we use 4 ex-
amples. Moreover, following Bulatov et al. (2023),
we use curriculum learning when training on longer
sequences for better performance and faster con-
vergence. The model is first trained on the short
fact-updating dataset until convergence. Then, we
use this as the starting point for a long dataset.

Making RMT converge on the fact-updating
dataset was not trivial. Unlike MemoryPrompt,
which directly converged on short fact-updating
datasets, RMT required a more elaborate curricu-
lum learning process. We first had to train it on
very short sequences whose length was gradually
increased upon convergence. Moreover, RMT is
more prone to exploding and vanishing gradients
(Hochreiter, 1998; Bengio et al., 1994). Training
RMT is even more difficult when the model is larger.
We failed to make OPT-350M-finetuned + RMT con-
verge on any of the datasets due to this problem.

5. Results

5.1. Fact updating

Memory-augmented models outperform their full-
context counterparts on all the fact-updating
datasets (see Table 2). Indeed, MemoryPrompt
applied to OPT-125M, the smallest model in the
OPT family, outperforms the largest full-context
models we were able to run, including instrucion-
tuned (IML) variants, often dramatically.

The average input length to the full-context mod-
els in the long setups is 1,698 tokens, whereas
it is only 92 tokens for MemoryPrompt, showing
that, for this task, memory vectors are better and
much more efficient representations compared to
full textual context.

RMT shows good performance overall, but it lags
in general behind MemoryPrompt. Importantly, as
we show in Section 5.3 below, the good perfor-
mance of RMT comes at the cost of having lost
much of the knowledge stored in the underlying
model, making this approach unviable for scenar-
ios in which we want a LM to both effectively track
contextual updates and maintain its core general
knowledge.

Surprisingly, OPT-125M outperforms the larger
OPT-350M model in both the full-context and



11191

Model short long Perplexity
WikiText-103

Forgetting rate
TRExnd fd nd fd md mu

random pivot object 45.55 44.26 30.88 29.85 31.02 9.61 - -
OPT-125M-full-context 47.39 36.41 34.97 31.21 19.36 21.96 27.68 0.0
OPT-350M-full-context 46.24 39.30 23.41 22.83 19.07 9.82 22.04 0.0
OPT-1.3B-full-context 44.79 39.30 42.48 44.21 37.57 19.94 14.64 0.0
OPT-2.7B-full-context 42.19 37.86 34.97 39.30 40.75 17.91 12.47 0.0
OPT-IML-1.3B-full-context 50.86 44.79 41.32 43.35 33.81 18.49 14.68 0.0
OPT-IML-MAX-1.3B-full-context 49.71 47.68 40.75 45.08 36.70 18.49 14.70 0.0
OPT-125M-finetuned + RMT 93.33 55.60 89.65 45.49 23.12 72.42 11455.11 97.4
OPT-125M + MemoryPrompt 89.99 58.84 92.14 51.38 25.83 80.69 27.80 13.0
OPT-350M + MemoryPrompt 86.35 53.0 87.05 46.82 22.19 74.33 22.10 10.0

Table 2: Accuracy of the different models on the fact-updating datasets,3 WikiText-103 perplexity and
forgetting rate (%) on TREx facts, which measure catastrophic forgetting. The non-trivial random pivot
object baseline picks an object appearing in any pivot statement at random.

Model Perplexity
MSC

Perplexity
WikiText-103

Forgetting rate
TREx

OPT-125M (conditioned on last turn) 23.26 27.68 0.0
OPT-125M (conditioned on history) 20.79 27.68 0.0
OPT-125M-finetuned + RMT 17.82 202.83 80.0
OPT-125M + MemoryPrompt 20.60 28.37 13.0

Table 3: Perplexity on MSC. We also report perplexity on WikiText-103 and forgetting rate (%) on TREx
facts, which measure catastrophic forgetting.

memory-augmented scenarios. This might be re-
lated to the recent observation by Voita et al. (2023)
that OPT-350M is an “outlier” model in the OPT
family. In any case, the MemoryPrompt wrapper
clearly benefits OPT-350M as well.

As shown in Figure 3, unlike for the full-context
baselines, MemoryPrompt’s performance is essen-
tially stable across the number of updates within a
dataset. On the other hand, in Table 2 we observe
a clear slump for all memory-augmented models
on the long md dataset, the setting with the largest
number of facts to keep track of (recall that models
can’t tell distractors apart from the pivot, so they
must track updates of both). This suggests that
MemoryPrompt is robust to the number of updates
of specific facts, but it struggles when there are
many different facts to update (a problem that RMT
also displays). If MemoryPrompt, as suggested
by our qualitative analysis in Section 5.4 below, is
learning to specialize specific memory vectors to
specific facts, it figures that, with just 5 memory
vectors and too many facts to keep track of, its
performance drops. In other words, the problem is
not with the updating and retrieval mechanism, but
with the amount of different facts to store, clearly
an issue to be pursued in future work.

3The dataset names nd, fd, md and mu come from
Table 1.

5.2. MSC

MemoryPrompt’s performance on MSC is as good
as conditioning on the whole conversation history
(see Table 3).4 This implies that the memory vec-
tors can effectively track long previous interactions
without requiring a large context window, even
when the relevant information in the previous in-
teractions is not as clearly encoded as in the fact
updating datasets. We note that the entire history
contains 1,412 tokens on average vs. 18 tokens of
context for MemoryPrompt. RMT achieves lower
perplexity, but, as it requires full-model finetuning,
this comes at the cost of catastrophic forgetting, as
we will discuss next.

5.3. (No) catastrophic forgetting

Our intention with MemoryPrompt is to provide a
light way for the model to track contextual informa-
tion without affecting the model base performance.
In a realistic scenario, a generalist LM should be
able to update information during a conversation,
but still retain the knowledge it acquired during pre-
training. We thus want to ensure that adding the
MemoryPrompt vectors to the LM input is not affect-
ing the model on its base task (next token predic-
tion). To test this, we collect 4 prefixes generated

4We also evaluate MemoryPrompt on the IRC Disen-
tanglement (Kummerfeld et al., 2019) dialog dataset and
obtain similar results as with MSC. However, we could
not train RMT on it due to computational limitations



11192

Figure 3: Accuracy of OPT-1.3B full-context (top) and OPT-125M + MemoryPrompt (bottom) as a function
of the number of updates on the long many-updates (mu) fact-updating dataset.

at the end of sequences from each fact-updating
dataset (24 prefixes in total). For MSC, we col-
lect prefixes generated at the end of conversations.
These prefixes are then combined with the input
of the base LM (as we normally do when using
MemoryPrompt). We apply the same approach to
evaluating RMT for catastrophic forgetting.

We evaluate MemoryPrompt and RMT on two
tasks probing how their memory vectors change
the model’s original behaviour. First, we compute
their perplexity on a standard corpus that was not
used to train the memory component. In particular,
we use WikiText-103 (Stephen et al., 2017). We
also compute a forgetting rate score, that is, the
proportion of (non-updated) TREx facts for which
a memory-augmented LM predicts a different ob-
ject than the same model would without any mod-
ification (so, trivially, this measure is 0% for the
unchanged full-context models). We compute for-
getting rate on facts that were not used in the fact
updating datasets.

As the Perplexity columns of tables 2 and 3
show, MemoryPrompt’s WikiText-103 perplexities
are almost identical to those of the equivalent non-
augmented models. The situation is very different
for RMT, whose WikiText-103 perplexities suggest
that the augmented model has become incapable
to perform the standard LM token prediction task.
Concerning forgetting rate (last column of tables
2 and 3), we confirm again that RMT is dramat-
ically affected by the memory-augmentation pro-
cess, making new predictions for a large majority of
facts that were not updated. MemoryPrompt’s for-

getting rate is also non-negligible, but much lower
than that of RMT.

Overall, we confirm that a LM augmented with
MemoryPrompt’s vectors is not greatly affected in
its default performance, so that it can both take
contextual updates into account, but continue us-
ing the rich general knowledge it acquired during
pretraining.

5.4. Memory vector analysis

Memory vectors lie in the same space as the model
token embeddings. We can thus get insights on
what they are recording by directly measuring their
cosine similarity to that of tokens of interests, such
as those representing updated objects. Figure
4 shows representative cosine similarity profiles
across several updating and non-updating state-
ments for the same memory vector and all the
object embeddings (examples taken from the short
fact-updating dataset). As the figure shows, this
memory vector tends to become more similar to
the pivot objects that occur in update statements,
and often retains this high-similarity across a num-
ber of statements involving other, irrelevant objects.
For example, on the left panel, the memory vector
increases its similarity to Ghent, Boston, Ghent
and Hamburg, respectively, as it encounters fact
updates involving these objects. Irrelevant facts are
ignored, even when they involve cities as objects,
which could in principle confuse the model.

This analysis suggests that the MemoryPrompt
vectors possess a certain degree of interpretability,
although we typically failed to find more than a



11193

Figure 4: Cosine similarity between one of 5 memory vectors and the embeddings of the objects in a
sequence. Each figure represents a sequence, with objects of different facts on the x-axis. The pivot
objects are in bold. The subject/relation of the pivots are Louis Charles Delescluze/work location (left)
and Rao Remala/employer (right).

single memory vector per dataset that possessed
this degree of transparency, and we must leave
further vector decoding work to future research.

6. Discussion

We introduced MemoryPrompt, a simple approach
that allows a Transformer-based LM to carry and
update contextual information across long spans
without requiring a long attention context window.
The main intuition of our approach is that rele-
vant information can be passed across process-
ing steps by letting the LM read a set of “memory”
vectors as a prefix to its standard input, akin to
the idea of soft prompting. By piggybacking on the
LM standard interface, we can add our memory
module to a pre-trained LM without touching its
architecture and without fine-tuning the model.

On a dataset designed to test the ability of mod-
els to track multiple fact updates, a smaller LM
augmented with MemoryPrompt can greatly out-
perform a much larger LM that gets the whole
context as its input. On the long-span dialogue
MSC dataset, MemoryPrompt provides compara-
ble performance to that of a model that can ac-
cess the whole dialogue history from its orders-of-
magnitudes larger context window.

We compared MemoryPrompt to our re-
implementation of RMT, a state-of-the-art memory-
augmented model that serves a similar purpose as
MemoryPrompt. While RMT achieves comparable
performance in the tasks we considered, it does
so at the cost of catastrophic forgetting, that is,
erasing the general token-prediction capabilities of
the underlying LM. MemoryPrompt is only slightly
affected by this problem.

MemoryPrompt still needs to be tested on a
more varied set of challenges and applied to larger
LMs (our experiments were constrained by com-
putational limitations). Moreover, we have seen

that MemoryPrompt is not robust to the number of
mutable facts in a sequence, as demonstrated by
its performance on the many-distractors dataset
(see Table 2). In this setup, OPT-125M + Memo-
ryPrompt outperforms its full-context counterpart,
but it lags behind the larger full-context models.

Moving forward, we believe that the light-touch
memory tracking abilities of MemoryPrompt have
a natural application in adapting pre-trained LMs
to specific users, and our main goal for the future
is to extend and test the model in a realistic setup
in which a LM needs to adapt to a persistent user,
by storing user-specific knowledge in its memory.
This, in turn, raises interesting questions concern-
ing the nature of memories. Can the memory sys-
tem, for example, learn which types of facts are
user-dependent and highly mutable, and should be
constantly tracked and updated? Can our method
be extended to track different streams of informa-
tion coming from different interlocutors? We leave
these and other questions to future work.

7. Ethics Statement

As we are using pre-trained language models with-
out re-training them, we are neither amplifying nor
alleviating the ethical issues that come with them.
We are also using datasets derived from existing
resources, and we are not aware of specific ethical
issues pertaining to these resources.

Current state-of-the-art language models are ex-
tremely large, and they can only be trained and run
by a few companies that have access to enormous
computational resources. We see efforts, such
as ours, to improve the performance of smaller
language models as positively contributing to the
need to democratize access to high-performance
AI systems.



11194

8. Acknowledgements

We thank Marco Del Tredici and the COLT group
for many interesting discussions about the topic of
memory in language models. We thank Corentin
Kervadec for helpful feedback and suggestions, as
well as for help in constructing the fact-updating
datasets. Our work was funded by the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 101019291). This
paper reflects the authors’ view only, and the fund-
ing agency is not responsible for any use that may
be made of the information it contains.

9. Bibliographical References

Iz Beltagy, Matthew Peters, and Arman Cohan.
2020. Longformer: The long-document trans-
former. https://arxiv.org/abs/2004.
05150.

Yoshua Bengio, Patrice Simard, and Paolo Fras-
coni. 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE transac-
tions on neural networks, 5(2):157–166.

Aydar Bulatov, Yuri Kuratov, and Mikhail Burtsev.
2023. Scaling Transformer to 1M tokens and be-
yond with RMT. https://arxiv.org/abs/
2304.11062.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. In Pro-
ceedings of NeurIPS, pages 11079–11091, New
Orleans, LA.

Shouyuan Chen, Sherman Wong, Liangjian Chen,
and Yuandong Tian. 2023. Extending context
window of large language models via positional
interpolation. arXiv preprint arXiv:2306.15595.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov.
2019. Transformer-XL: Attentive language mod-
els beyond a fixed-length context. In Proceed-
ings of ACL, pages 2978–2988, Florence, Italy.

Yanai Elazar, Nora Kassner, Shauli Ravfogel,
Abhilasha Ravichander, Eduard Hovy, Hinrich
Schütze, and Yoav Goldberg. 2021. Measur-
ing and improving consistency in pretrained lan-
guage models. Transactions of the Association
for Computational Linguistics, 9:1012–1031.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique
Laforest, and Elena Simperl. 2018. T-rex: A
large scale alignment of natural language with

knowledge base triples. In Proceedings of the
Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Angela Fan, Thibaut Lavril, Edouard Grave, Ar-
mand Joulin, and Sainbayar Sukhbaatar. 2020.
Addressing some limitations of transformers
with feedback memory. https://arxiv.org/
abs/2002.09402.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Her-
mann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blun-
som, Koray Kavukcuoglu, and Demis Hassabis.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature,
538(7626):471–476.

Sepp Hochreiter. 1998. The vanishing gradient
problem during learning recurrent neural nets
and problem solutions. International Journal of
Uncertainty, Fuzziness and Knowledge-Based
Systems, 6(02):107–116.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu,
Ethan Dyer, and Behnam Neyshabur. 2022.
Block-recurrent transformers. arXiv preprint
arXiv:2203.07852.

Armand Joulin and Tomas Mikolov. 2015.
Inferring algorithmic patterns with stack-
augmented recurrent nets. In Proceedings
of NIPS, Montreal, Canada. Published
online: https://papers.nips.cc/book/
advances-in-neural-information-processing-systems-28-2015.

Jonathan K. Kummerfeld, Sai R. Gouravajhala,
Joseph J. Peper, Vignesh Athreya, Chulaka Gu-
nasekara, Jatin Ganhotra, Siva Sankalp Patel,
Lazaros C Polymenakos, and Walter Lasecki.
2019. A large-scale corpus for conversation
disentanglement. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3846–3856, Florence,
Italy. Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant.
2021. The power of scale for parameter-efficient
prompt tuning. In Proceedings of EMNLP, pages
3045–3059, Punta Cana, Dominican Republic.

Xiang Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of ACL, pages 4582–4597, Online.

https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2304.11062
https://arxiv.org/abs/2304.11062
https://arxiv.org/abs/2002.09402
https://arxiv.org/abs/2002.09402
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-28-2015
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-28-2015
https://doi.org/10.18653/v1/P19-1374
https://doi.org/10.18653/v1/P19-1374


11195

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao
Jiang, Hiroaki Hayashi, and Graham Neubig.
2021. Pre-train, prompt, and predict: A sys-
tematic survey of prompting methods in natural
language processing. https://arxiv.org/
abs/2107.13586.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Merity Stephen, Xiong Caiming, Bradbury James,
and Richard Socher. 2017. Pointer sentinel mix-
ture models. Proceedings of ICLR.

Sainbayar Sukhbaatar, Arthur Szlam, Jason We-
ston, and Rob Fergus. 2015. End-to-end
memory networks. http://arxiv.org/abs/
1503.08895.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Proceedings of NIPS,
pages 5998–6008, Long Beach, CA.

Elena Voita, Javier Ferrando, and Christoforos
Nalmpantis. 2023. Neurons in large language
models: Dead, n-gram, positional. https:
//arxiv.org/abs/2309.04827.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu,
Alborz Geramifard, and Zhou Yu. 2022. Mem-
former: A memory-augmented transformer for
sequence modeling. In Findings of ACL, pages
308–318, Online.

Jing Xu, Arthur Szlam, and Jason Weston.
2021. Beyond goldfish memory: Long-term
open-domain conversation. arXiv preprint
arXiv:2107.07567.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022. Opt: Open pre-trained transformer lan-
guage models. arXiv preprint arXiv:2205.01068.

Zexuan Zhong, Dan Friedman, and Danqi Chen.
2021. Factual probing is [MASK]: Learning
vs. learning to recall. In Proceedings of NAACL,
pages 5017–5033, Online.

https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1503.08895
https://arxiv.org/abs/2309.04827
https://arxiv.org/abs/2309.04827

	Introduction
	Related work
	The MemoryPrompt model
	Experimental setup
	Datasets
	Models
	Training setup

	Results
	Fact updating
	MSC
	(No) catastrophic forgetting
	Memory vector analysis

	Discussion
	Ethics Statement
	Acknowledgements
	Bibliographical References

