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Abstract
The goal of multilingual modelling is to generate multilingual text representations for various downstream tasks
in different languages. However, some state-of-the-art pre-trained multilingual models perform poorly on many
low-resource languages due to the lack of representation space and model capacity. To alleviate this issue, we
propose a Multilingual model Enhanced with Visual Text Representations (MEVTR), which complements textual
representations and extends the multilingual representation space with visual text representations. First, the visual
encoder focuses on the glyphs and structure of the text to obtain visual text representations, and the textual encoder
obtains textual representations. Then, multilingual representations are enhanced by aligning and fusing visual text
representations and textual representations. Moreover, we propose similarity constraint, a self-supervised task to
prompt the visual encoder to focus on more additional information. Prefix alignment and multi-head bilinear module
are designed to acquire an improved integration effect of visual text representations and textual representations.
Experimental results indicate that MEVTR benefits from visual text representations and achieves significant
performance gains in downstream tasks. In particular, in the zero-shot cross-lingual transfer task, MEVTR achieves
results that outperform the state-of-the-art adapter-based framework without the target language adapter.

Keywords: multilingual representation, visual text representation，multilingual language model

1. Introduction

Pre-trained multilingual language models
(MLLMs), such as mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), and mDeBERTa
(He et al., 2023), aim to generate multilingual text
representations that can be used for downstream
tasks in different languages. However, even the
state-of-the-art MLLM still performs poorly on
cross-lingual transfer tasks for many low-resource
languages. The reason behind this is the current
lack of capacity in the model to represent most
languages equally in vocabulary and representa-
tion space (Bapna and Firat, 2019; Artetxe et al.,
2020). This problem limits the development of mul-
tilingual models towards more language coverage
and better multilingual text representations.

In this paper, we propose a Multilingual model
Enhanced with Visual Text Representations
(MEVTR), a novel architecture for multilingual
representation learning. As shown in Figure 1,
we render the text into a pixel image and pay
attention to the glyphs and structure of the text to
obtain the visual text representations. The visual
text representations are used to supplement the
textual representation and expand the textual
representation space, allowing the model to cover
a wider range of languages and obtain more
effective multilingual representations. In effect,

∗ Both authors contributed equally to this work.

Figure 1: A brief illustration of rendering text into
images, obtaining visual text representations, and
supplementing multilingual text representations.

we transform the NLP problem into a bimodal
problem of language and vision.

In most language models, each text is converted
into a sequence of tokens by vocabulary lookup.
This approach ignores the glyphs and the struc-
ture of the words. However, different languages
may have some similarities in their writing sys-
tems. For example, the Chinese word “天气” and
the Japanese word “天気” both refer to the weather
and have similar writing systems, as do the Span-
ish word “Ángel” and the English word “Angel”.
We believe that in multilingual representation learn-
ing, this similarity of writing systems can be seen
as a potential data augmentation, and words in
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low-resource languages will benefit from additional
training data from high-resource languages. This
similarity can be easily captured from a visual per-
spective, whereas subword-based approaches re-
quire considerable effort in vocabulary construc-
tion to ensure that similar semantic words in differ-
ent languages receive similar word embeddings.

Some previous works have focused on the
importance of visual features. To exploit visual
information in text, some works use visual features
to construct word embeddings (Broscheit, 2018),
or combine them with word embeddings as joint
embeddings (Meng et al., 2019). Other works
treat the textual tasks as computer vision tasks,
building language models based on the images
of text (Mansimov et al., 2020; Rust et al., 2023).
Unlike previous works, we use word embeddings
and the images of text as parallel inputs to obtain
textual and visual representations, and use the
visual text representation as a supplement to
the multilingual text representation. In principle,
the architecture we propose is suitable for most
pre-training MLLMs.

As far as we know, we are the first to use the bi-
modal method for multilingual text representation
learning, so we make a preliminary exploration on
the fusion method of textual bimodal representa-
tion learning. We propose similarity constraint,
a self-supervised task to prompt visual perspec-
tives to pay attention to more semantic informa-
tion, and design prefix alignment and multi-head bi-
linear module to achieve representation alignment
and fusion, respectively.

We validate the performance of MEVTR in multi-
ple languages and on multiple tasks, and MEVTR
significantly outperforms the baselines. In partic-
ular, for cross-lingual tasks, MEVTR significantly
outperforms state-of-the-art adapter-based frame-
works (Pfeiffer et al., 2021; Ansell et al., 2021) with-
out the target language adapter1.

Our contributions are threefold:
• We introduce MEVTR, a novel language vision

architecture for learning multilingual text represen-
tations. It extends the text representation space
with visual text representations and improves the
effective performance of multilingual models.
• We propose similarity constraint for richer se-

mantic representations; prefix alignment and multi-
head bilinear module are used for representation
alignment and fusion, respectively.

• We conduct a series of experiments to demon-
strate the performance improvements that MEVTR
brings to multilingual models on a variety of down-
stream tasks, including named entity recognition,

1We briefly introduce the adapter approach in section
2. The target language adapter refers to an adapter that
has been trained in the target language.

part-of-speech tagging, and structured sentiment
analysis.

2. Related work

Multilingual representation learning involves
learning and understanding the shared and spe-
cific semantic and syntactic structures of multilin-
gualism to perform downstream tasks in different
languages. To effectively learn features for cross-
lingual transfer learning, some MLLMs rely on
monolingual corpora in different languages with-
out additional cross-lingual supervision, such as
XLM-R (Conneau et al., 2020) and mDeBERTa
(He et al., 2023). Other models learn multilingual
targets during pre-training using parallel data in
multiple languages, such as XLM (Conneau and
Lample, 2019) and UniCoder (Huang et al., 2019).
Moreover, there are also adapter-based methods
(Pfeiffer et al., 2021; Ansell et al., 2021). Adapters
allow adding new parameters to the pre-trained
model as additional layers. By training on different
languages and tasks, task adapters and language
adapters can be obtained. When working on differ-
ent tasks and languages, language-specific repre-
sentations can be obtained by stacking task and
language adapters. However, these approaches
ignore the visual importance of text and fail to take
advantage of potential visual representations in
multilingual text.

Visual Language Modelling unlike subword-
based vocabularies, focuses on the visual text rep-
resentation. Meng et al.(2019) enriched the rep-
resentation of Chinese characters by combining
their glyph features with the corresponding charac-
ter embedding. Mansimov et al.(2020) proposed
an end-to-end neural network model that effec-
tively translates images with text from one lan-
guage to another while preserving the same se-
mantics. Rust et al.(2023) proposed a pixel-based
pre-trained language model, where input text is
transformed into pixel images, to achieve com-
petitive results against the vocabulary-based lan-
guage model BERT in various tasks. Instead, we
obtain visual text representations and multilingual
representations separately, and then supplement
the multilingual representations with visual text rep-
resentations.

Vision-Language Models aim to perceive, un-
derstand and integrate visual and textual infor-
mation in our complex multimodal world, and
then create cross-modal representations to over-
come difficult cross-modal challenges. Most vision-
language models, such as ViLT (Kim et al., 2021),
METER (Dou et al., 2022), and BridgeTower (Xu
et al., 2023) apply the TWO-TOWER architecture,
consisting of a visual encoder, a textual encoder
and a cross-modal encoder. The visual and textual
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Figure 2: An overview of our proposed MEVTR. MEVTR consists of five components as shown above:
(a) visual encoder and text encoder extract visual text representations and textual representations respec-
tively; (b) prefix alignment achieves alignment of two modal representations; (c) similarity constraint is
used to constrain the two encoders to focus on different semantic representation; (d) multi-head bilinear
module is used for modal fusion; (e) representation projector is used to map the fused representations
onto the high-dimensional textual representation space.

encoders capture visual and textual semantics re-
spectively. The cross-modal encoder fuses the se-
mantics of the two modalities. We take advantage
of the TWO-TOWER architecture and use a visual
encoder to obtain visual text representations, with
the aim of enriching the semantic representations
of the textual encoder.

3. MEVTR: The Proposed Method

As shown in Figure 2, our model consists of a vi-
sual encoder, a textual encoder, and subsequent
components for aligning and fusing the visual and
textual representations. Our objective is to acquire
a visual text representation by means of a visual
encoder that concentrates on the glyphs and struc-
ture of the text. By aligning and fusing the visual
and textual representations, a more efficient tex-
tual representation is attained.

3.1. Textual Encoder

Since our goal is to improve the semantic repre-
sentations of MLLMs through visual text represen-
tations, we adopt the pre-trained language model
XLM-R (Conneau et al., 2020) as our textual en-
coder. It is based on the Transformer architecture
(Vaswani et al., 2017) and uses a large amount
of multilingual text for pre-training. It uses the
Byte-Pair Encoding (BPE) (Sennrich et al., 2016;
Radford et al., 2019) for tokenization, which splits
some words into multiple subwords. A tokenized
word can be represented as: Cℓ = [c1; c2; · · · ; cα],
where α denotes the number of subwords.

Assuming that the length of the text sequence
is n and the tokenized sequence is i, the tok-
enized sequence can be expressed as: S =[
C1

ℓ ;C
2
ℓ ; · · · ;C

n−1
ℓ ;Cn

ℓ

]
, where S ∈ Ri,the super-

script of C indicates the position of the text se-
quence. [< s >] token and [< /s >] token are
added to the sequence as the start and end to-
kens, respectively. The output textual representa-
tions can be represented as:

Toutput =
[
x[<s>];X

1
ℓ ;X

2
ℓ ; · · · ;

Xn−1
ℓ ;Xn

ℓ ;x[</s>]

]
,

(1)

where Toutput ∈ R(i+2)×dt , dt is the dimension of
the textual encoder, Xℓ = [x1;x2; · · · ;xα] and x is
the last layer representation of the textual encoder.

3.2. Visual Encoder
The purpose of the visual encoder is to extract the
glyphs and structural features of the text. While
typical visual encoders mainly tackle images with
intricate semantics, we focus on the matrix gen-
erated by text rendering, which generally conveys
less semantic information than regular images.
Therefore, we employ the 12-layer encoder of
PIXEL (Rust et al., 2023) as our visual encoder.
It is a pre-trained language model based on pixel
modelling and adopts the pre-training architecture
of ViT-MAE (He et al., 2022).

Visual encoder employs the patch embedding
strategy identical to Vision Transformer (Dosovit-
skiy et al., 2021). The pixel image rendered from
the text is sliced into a sequence of patch em-
beddings with the same pixel resolution. Since
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the size of each patch cannot be flexibly ad-
justed based on the length of the word, a single
word may necessitate several patch embeddings
to represent it, and can be denoted as :Pℓ =
[p1; p2; · · · ; pβ ], where β denotes the number of
patch embeddings. The length j of the patch em-
bedding sequence will be longer than the length n
of the original text. The visual encoder also adds
a special [cls] token to the patches sequence. The
output visual representations can be represented
as:

Voutput =
[
w[cls];W

1
ℓ ;W

2
ℓ ; · · · ;Wn−1

ℓ ;Wn
ℓ

]
, (2)

where Voutput ∈ R(j+1)×dv , dv is the dimension of
the visual encoder, Wℓ = [w1;w2; · · · ;wβ ] and w is
the last layer representation of the visual encoder.

3.3. Prefix Alignment

Both the BPE employed in the textual encoder and
the patch embedding approach implemented in
the visual encoder may make the length of the rep-
resentation sequence larger than the original text,
resulting in patch tokens and word tokens being
unaligned.

Therefore, we employ prefix alignment, a sim-
ple method of alignment. When a word is split into
several tokens or patches, we choose the token or
patch at the first position to represent the word, as
can be seen in Figure 2 (b). As identical suffixes
are frequently used by several different words, it
is widely presumed that these suffixes provide lit-
tle representational information, while the main in-
formation is concentrated at the first position (Lin
et al., 2022). After the prefix alignment, the textual
and visual representations are as follows:

Trep =
[
xcls;x

1
1;x

2
1; · · · ;xn−1

1 ;xn
1

]
, (3)

Vrep =
[
wcls;w

1
1;w

2
1; · · · ; ;wn−1

1 ;wn
1

]
, (4)

where Trep ∈ R(n+1)×dt , Vrep ∈ R(n+1)×dv .

3.4. Similarity Constraint

We propose similarity constraint to learn better
unimodal representations before fusion. Specif-
ically, we constrain parallel text-image pairs to
have low similarity between textual representa-
tions xcls = [t1; · · · ; ti; · · · ; tdt

] and visual repre-
sentations wcls = [v1; · · · ; vi; · · · ; vdv

], thus con-
straint two encoders to focus on as different in-
formation as possible. To avoid affecting the rep-
resentation of the textual encoder, we utilize the
Kullback-Leibler (KL) divergence with asymmetry
as our similarity score, where a high similarity
score indicates a significant difference in represen-
tation. The similarity function is defined as follows:

gt (ti) = a
ti − µ (xcls)

σ (xcls)
+ b, (5)

gv (vi) = a
vi − µ (wcls)

σ (wcls)
+ b, (6)

S = KL (gt (ti) ∥ gv (vi)) , (7)
where S denotes the similarity score, gt and gv are
linear transformations that map xcls andwcls to nor-
malized representations, µ and σ represent the cal-
culation of the average and variability respectively,
and a and b are trainable parameters. The loss
function for the similarity constraint is defined as
follows:

Lsc =
ω

S
, (8)

where ω is the scaling weight of the similarity
score, and we set ω to 10,000. Throughout the
training process, we expect to see an increase in
similarity scores as well as an increase in the di-
vergence between the semantic representations of
the two modalities.

3.5. Multi-head Bilinear Module
To integrate textual and visual representations, we
construct the multi-head bilinear module to com-
pute attention scores in the representation space.
We are inspired by the multi-head attention mech-
anism (Vaswani et al., 2017) that uses multi-head
structures to focus on information in different rep-
resentation subspaces. Our multi-head bilinear
module differs from the multi-head attention mech-
anism. The multi-head attention mechanism fo-
cuses on the associations between different to-
kens. On the other hand, the multi-head bilinear
module focuses on the relations within the rep-
resentation space, and the size of the attention
score matrix is related to the dimension of the rep-
resentation space. Furthermore, since two modal
representations of the same text contain less se-
mantics than the Vision-Language representation,
the requirements for modal fusion are relatively un-
complicated. The bilinear model (Lin et al., 2015)
is a simple feature fusion method and can well
consider the correlation of two modal representa-
tions, so we propose the multi-head bilinear mod-
ule based on the bilinear model.

We introduce the bilinear model and the multi-
head bilinear module, respectively, and illustrate
the computation of the attention score matrix
for visual representations, as shown in Figure
2 (d). We utilize textual representations T =
[t1; · · · ; ti; · · · ; tdt ] and visual representations P =
[v1; · · · ; vi; · · · ; vdv

] as inputs. The bilinear model
can be expressed as:

M = PTTW + b =

dv∑
j=1

dt∑
k=1

pjtkwj,k + b, (9)
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Task Datasets Languages

Named Entity
Recognition

(NER)

MasakhaNER (Adelani et al., 2021)
CoNLL 2003

(Sang and Meulder, 2003)

Hausa (hau), Igbo (ibo), Luo (luo), Swahili,
Luganda (lug), Wolof (wol), Yorùba ́ (yor),
Nigerian-Pidgin (pcm), Kinyarwanda (kin)

Part-of-Speech
Tagging (POS)

Universal Dependencies 2.10
(Zeman et al., 2022)

Arabic (ar), Bambara (bm), Cantonese,
Livvi, Erzya, Uyghur (ug), Faroese,

Komi Zyrian (kpv), Upper Sorbian, Buryat

Structured
Sentiment

Analysis (SSA)

MPQA (Wiebe et al., 2005)
MultiBCA and MultiBEU
(Barnes et al., 2018)

NoReCFine (Øvrelid et al., 2020)

English, Catalan, Basque,
Norwegian

Table 1: Details of the tasks, datasets and languages involved in our experiments. Abbreviations for some
languages are given in brackets. Further details of all the language and datasets used are provided in
Appendix B.

where W ∈ Rdt×dv is a trainable parameter,
b ∈ Rdv×dv is a bias. To focus on different sub-
spaces within the visual representation space, we
first divide the visual representation space into h
sections. We then compute the bilinear model
separately for each representation subspace, nor-
malise it via the softmax function, and connect
them to obtain the attention score matrix. Fi-
nally, the new visual representation is obtained by
weighting the dv dimensional semantic representa-
tion of the original visual representation:

P = concat (P1, · · · , Pn, · · · , Ph) , (10)
mn = softmax

(
PT
n TWn + bn

)
, (11)

Pnew = P · concat (m1, · · · ,mn, · · · ,mh) , (12)

where mn, bn ∈ R(dv ⁄h)×dv and Wn ∈ Rdt×dv .

3.6. Representation Projector
To achieve a more extensive semantic represen-
tation space, we combine the textual and visual
representation spaces to create a joint representa-
tion space. Then, we employ the non-linear map-
ping to map the joint spatial representation to a
higher-dimensional textual representation space,
as shown in Figure 2 (e). Specifically, we use two
consecutive linear layers with the activation func-
tion ReLu as the projector.

We aim to use visual representations to supple-
ment the information neglected in the textual rep-
resentation without changing the original semantic
information. Therefore, we build a joint spatial rep-
resentation using weighted visual representations
Pnew and original textual representations T . The
calculation of the high-dimensional textual repre-
sentation space is defined as follows:

Z = projector (concat (T, Pnew)) , (13)
where the dimension of Z is determined by the size
of the hidden layer in the projector. In section 6, we

conduct extensive experiments on the selection of
different dimensions in the high-dimensional tex-
tual representation space.

4. Experiments

4.1. Datasets and Settings
To evaluate MEVTR, we use named entity recog-
nition (NER) and part-of-speech (POS) tagging
for zero-shot cross-lingual transfer, and structured
sentiment analysis (SSA) 2 (Barnes et al., 2021) for
multilingual fine-tuning. Table 1 summarises our
datasets for the experiments. These datasets con-
tain more than 30 languages, including not only
high-resource languages but also a large number
of low-resource languages.

For our experimental setup, we use XLM-
RoBERTa-base as the textual encoder and PIXEL-
base as the visual encoder. The maximum input
text sequence length is 512 for the textual encoder
and 529 for the visual encoder. The patch size in
our visual encoder is 16 × 16, and the number of
heads in the multi-head bilinear module is 6. In the
representation projector, we set the textual repre-
sentation space dimension to 1,536.

In zero-shot cross-lingual transfer tasks, we use
English as the source language. We first fine-tune
the model on the English dataset and then transfer
it directly to the target language for performance
evaluation. During fine-tuning, we freeze the first
6 layers of both encoders and use the AdamW op-
timiser (Loshchilov and Hutter, 2019) with a base
learning rate of 2e-5 and a weight decay of 0.05.
For the NER and POS tagging tasks, we train

2SSA aims to predict all opinion tuples in a text. Each
opinion O is a tuple (t, h, e, p), where h is a holder ex-
pressing a polarity p towards a target t through a sen-
timent expression e, and is an NLP task that combines
syntactic and semantic complexity.
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NER (F1 score) POS (Accuracy)
hau luo pcm yor avg ar bm kpv ug avg

XLM-R 77.0 33.8 77.1 49.6 51.1 75.3 23.6 37.5 74.9 58.7
Concat 75.9 37.3 76.3 46.7 54.2 74.9 24.3 29.7 69.8 50.0

Cross-modal Attention 77.2 35.1 77.4 49.5 54.1 43.4 22.8 23.9 44.0 33.8

MAD-X TA 44.0 33.0 71.0 66.6 52.4 70.8 37.2 35.8 36.8 56.2
LT-SFT TA 46.5 37.7 74.4 69.3 55.3 70.6 34.2 37.1 34.0 55.0

MEVTR 77.2 44.1 77.7 50.6 57.8 78.3 31.9 38.9 75.0 59.7

Table 2: Results of the NER and POS tagging tasks in cross-lingual transfer, F1 score and accuracy
are used as the corresponding evaluation metrics. TA indicates no target language adapter. The results
of MAD-X TA and LT-SFT TA are from Ansell et al. (2022). Bold denotes best-performing method per
language. The table shows the results for a subset of the languages, and avg indicates the average
results for all the languages in Table 1. The complete experimental results are provided in Appendix C.

15,000 steps on each dataset with a batch size of
64. We select the best checkpoint for evaluation
based on the validation performance of the model
on the English dataset.

In multilingual fine-tuning, we fine-tune our
model directly on each language dataset. The ex-
perimental setup is the same as for zero-shot
cross-lingual transfer, except we use a batch size
of 48 for SSA.

4.2. Zero-shot Cross-lingual Transfer
We compare MEVTR with two state-of-the-art
adapter-based frameworks: 1) MAD-X (Pfeiffer
et al., 2020) : which uses an additional invertible
adapter for cross-language transfer tasks; and 2)
LT-SFT (Ansell et al., 2022) : which is based on
MAD-X and introduces sparse fine-tuning. In ad-
dition, to verify the effectiveness of our proposed
modal fusion method, we also set up for compari-
son the fusion methods of Cross-modal Attention
and Concat, which also introduce visual text repre-
sentations. We present the results for the NER 3

and POS tagging tasks in Table 2.
MEVTR outperforms XLM-R, with average per-

formance gains of 6.7 F1 score in NER and 1 ac-
curacy in POS tagging. These gains are driven by
visual text representations, demonstrating the im-
portance of focusing on the visual features of text.
MEVTR also has significant advantages over state-
of-the-art adapter-based frameworks. It is impor-
tant to emphasise that we compare the results with-
out applying the target language adapter. This is
because the target language adapter is trained on
the target language, whereas the target language
is completely invisible to MEVTR. We argue that

3MasakhaNER and CoNLL 2003 datasets use dif-
ferent tags, with DATE and MISC used uniquely by
each; therefore we replace them with the O tag during
both training and testing.

this result is due to the fact that MEVTR focuses on
visually written representations of text and benefits
from visual similarities between languages when
performing zero-shot cross-lingual transfer tasks.

Compared to the Cross-modal Attention and
Concat methods, which also use visual text rep-
resentations, MEVTR has the best performance.
In some cases, the more complex Cross-modal At-
tention method, which is commonly used in mul-
timodal domains, performs much worse than the
simple Concat method. This result supports our
view to some extent. In multimodality, to obtain
a better multimodal representation, it is necessary
to let the representations of two modalities interact
sufficiently to achieve alignment and fusion. How-
ever, visual text representations have less seman-
tic information, and excessive interaction leads to
an undesired loss of textual semantics. Therefore,
the complex Cross-modal Attention method some-
times produces a worse result than the Concat
method. The multi-head bilinear module used in
MEVTR is a modal fusion method that performs
simple interactions and thus achieves the best per-
formance.

For POS tagging, we also find that the visual text
representations brought less gains. The Cross-
modal attention method and the Concat method
perform much worse than the unimodal method.
We attribute this to the poor quality of the extracted
visual text representations, which instead of pro-
viding an additional representational complement
to the textual representation, compromise it. In-
deed, the average accuracy of using only visual
text representations in POS tagging is 24.3%. It is
worth noting that MEVTR can still extract effective
semantics from visual text representations with su-
perior results via the multi-head bilinear module.
This also demonstrates the superiority of the multi-
head bilinear module in representations fusion.
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MPQA MultiBCA MultiBEU NoReC Fine avg(English) (Catalan) (Basque) (Norwegian)

XLM-R 27.9 61.5 58.4 42.4 47.6
Concat 24.9 61.0 56.5 33.7 44.0

Cross-modal Attention 24.0 57.2 51.9 36.7 42.5
MEVTR 31.5 61.6 60.4 42.7 49.1

Table 3: Results of the SSA task in multilingual fine-tuning, sentiment graph F1 score (Barnes et al.,
2021)as the evaluation metric.

NER SSA
F1 score F1 score

Visual encoder 31.1 34.7
Textual encoder 51.1 47.6

MEVTR w/o SC & RP 55.2 47.9
MEVTR w/o SC 55.6 48.0

MEVTR 57.8 49.1

Table 4: Results of the ablation studies on MEVTR
for NER and SSA. w/o denotes ‘without’.

4.3. Multilingual Fine-tuning
We further evaluate MEVTR in the multilingual fine-
tuning task. Table 3 shows the performance of
MEVTR in structured sentiment analysis. Using vi-
sual text representation, MEVTR significantly out-
performs XLM-R on four datasets in different lan-
guages, with an average improvement of 1.5 senti-
ment graph F1 score 4. This further demonstrates
the validity of MEVTR in using visual text repre-
sentations to complement textual representations
and obtain better multilingual semantic representa-
tions.

In comparison with Cross-modal Attention and
Concat methods, which also use visual text repre-
sentations, MEVTR shows significant advantages.
Furthermore, we find that Cross-modal Attention
and Concat methods show a similar pattern to the
POS tagging task. They both suffer significant
performance degradation due to their inability to
capture meaningful semantic information within vi-
sual text representations, instead of introducing
large amounts of irrelevant or erroneous informa-
tion. However, MEVTR achieves an improvement
with the visual text representation, demonstrating
its ability to focus on valuable information.

4.4. Ablation Studies
To evaluate the impact of each component, we per-
form ablation studies of MEVTR on the NER task

4The sentiment graph F1 score is a metric that at-
tempts to quantify the extent to which the model cap-
tures fully structured sentiment.

in zero-shot cross-lingual transfer and the SSA
task in multilingual fine-tuning. 1) Visual encoder
denotes that only visual text representations are
used; 2) Textual encoder denotes that only textual
representations are used; 3) SC denotes the sim-
ilarity constraint; 4) MBM denotes the multi-head
bilinear module; 5) RP denotes the representation
projector.

As shown in Table 4, MEVTR significantly out-
performs MEVTR w/o* (* indicates components)
in both tasks, demonstrating the importance of
each component in MEVTR. Specifically, the per-
formance of the visual text representation obtained
by the visual encoder is significantly lower than the
others, which is actually expected. The seman-
tics of text obtained from a visual perspective is
often not superior. Using only the multi-head bilin-
ear module (MEVTR w/o SC and RP) to fuse the
two representations gives better results than either
one alone. This demonstrates the feasibility of us-
ing visual text representations to complement tex-
tual representations and the effectiveness of the
multi-head bilinear module for modal fusion.

Compared to the representation projector, the
similarity constraint has a more significant im-
provement over MEVTR. Because the representa-
tion projector is a simple non-linear mapping for
remapping visual textual joint representations into
a higher dimensional textual representation space.
Nevertheless, the similarity constraint can force
the two encoders to focus on different textual in-
formation, resulting in a more complete represen-
tation.

5. Case Study

For a more in-depth analysis, we further ana-
lyze the effect of introducing word glyphs into the
model. We first construct two pairs of cases using
the four languages, each pair having the same tex-
tual semantics, and in addition each pair contain-
ing morphologically similar and semantically simi-
lar word pairs, as shown in Figure 3.

We then fine-tune MEVTR and XLM-R on the
same English dataset, making them both 97% ac-
curate on the POS tagging task. Finally, we use
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Figure 3: The case we designed contains four sen-
tences in Chinese, Japanese, English, and Span-
ish. Among them, the Chinese word ” 天气” and
the Japanese word ”天気” are morphologically and
semantically similar as a pair of similar words, and
the English word ”Angel” and the Spanish word
”Ángel” are also a pair of similar words.

Figure 4: KL scatter and Euclidean distance be-
tween representation vectors of similar words in
different languages.

the fine-tuned MEVTR and XLM-R to obtain rep-
resentation vectors for two pairs of similar words
in different languages but in the same sentence
meaning. We compare the representation vectors
obtained by MEVTR and XLM-R when processing
similar words in different languages, and the re-
sults are shown in Figure 4.

In Figure 4 (a), the KL scatter between the rep-
resentation vectors obtained by MEVTR is signifi-
cantly smaller than that of XLM-R, indicating that
the distribution of representation vectors of sim-
ilar words is closer in MEVTR. In Figure 4 (b),
the Euclidean distance between the representa-
tion vectors obtained by MEVTR is again smaller
than that of XLM-R. We argue that MEVTR intro-
duces the glyph information of the text, so that

NER (F1 score)
mBERT mDeBERTa

Textual encoder 57.6 67.7
MEVTR 58.6 69.6

Table 5: Results of MEVTR in the NER task using
mBERT and DeBERTa as text encoders, respec-
tively.Textual encoder indicates that only the origi-
nal MLLM is used.

even words that do not belong to the same lan-
guage but have similar glyphs often get closer rep-
resentation vectors, whereas the XLM-R model
completely ignores the glyph features and treats
words in different languages as completely differ-
ent words, regardless of whether they have sim-
ilar glyphs or not. We believe that the fact that
MEVTR can exploit this similarity is an important
reason why it outperforms general language mod-
els in multilingual representation tasks.

6. Further Analysis

Apply Different Textual Encoders. In principle,
most pre-trained language models can be used as
our text encoder. We use mBERT (Devlin et al.,
2019) and mDeBERTa 5 (He et al., 2023) as our
textual encoder for the NER task, respectively, to
further analyse the effect of introducing visual text
representations via MEVTR. As shown in Table 5,
both pre-trained multilingual models, mBERT and
DeBERTa, perform better after the introduction of
visual text representation via MEVTR. This further
demonstrates the generalisability of our proposed
MEVTR and the effectiveness of the approach that
uses visual text representations to complement
textual representations.

Explore the Dimension of Textual Represen-
tation Space. We conduct experiments on the
NER task in 6 languages using different dimen-
sions of the representation projector to analyse the
effect of dimensions on textual representations.
As shown in Figure 5, there is a general tendency
that too large or too small a dimension of the
representation space affects the effectiveness of
multilingual text representations, and the dimen-
sion of the mapped high-dimensional textual rep-
resentation space should be between 1,024 and
2,048. This suggests that when we use visual text
representations to complement textual representa-
tions, we need to expand the original representa-
tion space in order to obtain better multilingual text
representations.

5We use mDeBERTa-v3-base, which is a multilingual
version of DeBERTa, using the same structure as De-
BERTa and trained with CC100 multilingual data.
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Figure 5: Performance of MEVTR with different di-
mensions of the textual representation space for
NER.

Figure 6: The KL divergene between the attention
distributions of the different heads in the last 6 lay-
ers of the visual encoder with and without similarity
constraint.

Visualise the effect of similarity constraint
on models. Analyzing attention weights is intuitive
because it measures how much attention each to-
ken pays to other tokens. We analyse the effect of
similarity constraint on the visual encoder by cal-
culating the attention weight distributions for differ-
ent attention heads in the last 6 layers. (We freeze
the first 6 layers of the model, so we only calculate
the KL divergence for the last 6 layers). KL diver-
gence can be seen as the diversity of attentional

heads. Higher/lower KL divergence means that
different attention heads focus on different/similar
tokens. As shown in Figure 6, by comparing the
attention weight distributions for different heads in
each layer, we find that the diversity of attentional
heads increases significantly with similarity con-
straint. We attribute this to the fact that with similar-
ity constraint the visual encoder focuses on more
information and has access to richer semantic rep-
resentations.

7. Conclusion and Future Work

We propose MEVTR, a language vision archi-
tecture for improving multilingual text representa-
tion. MEVTR obtains visual text representations
by focusing on the glyph and structure of the text
through the visual encoder. The visual text repre-
sentations are then used to complement the tex-
tual representations, resulting in a larger represen-
tation space and more effective multilingual repre-
sentations. We also propose similarity constraint,
prefix alignment and multi-head bilinear module for
better complements. In addition, MEVTR can use
most pre-trained multilingual models as the textual
encoder. We experimentally demonstrate the ef-
fectiveness of MEVTR, which achieves significant
performance on a wide range of tasks.

In future work, we will continue to focus on the
impact of visual text representations on multilin-
gual text representations, further exploring and ex-
ploiting visual features. Furthermore, we argue
that texts express information in a multimodal way,
and that not only the visual aspect of the writing
system, but also the auditory aspect of pronuncia-
tion deserves attention.
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Appendix

A. Code

We release the code and models at https://github.com/wenlong1019/MEVTR. Currently we only
provide a simple version of the method implementation, we will provide the full version later.

B. Datasets

Task Language ISO Code Family Datasets UD Treebank

NER

English en Indo-European, Germanic CoNLL 2003
(Sang and Meulder, 2003)

N/A

Hausa hau Afro-Asiatic, Chadic

MasakhaNER
(Adelani et al., 2021)

Igbo ibo Niger-Congo, Volta-Niger
Kinyarwanda kin Niger-Congo, Bantu
Luganda lug Niger-Congo, Bantu
Luo luo Nilo-Saharan
Nigerian-Pidgin pcm English Creole
Swahili swa Niger-Congo, Bantu
Wolof wol Niger-Congo, Senegambian
Yorùbá yor Niger-Congo, Volta-Niger

POS

Arabic ar Afro-Asiatic, Semitic

Universal Dependencies 2.10
(Zeman et al., 2022)

PUD
Bambara bm Mande CRB
Buryat bxr Mongolic BDT
Cantonese yue Sino-Tibetan HK
Erzya myv Uralic, Mordvin JR
Faroese fo Indo-European, Germanic FarPaHC
Komi Zyrian kpv Uralic, Permic Lattice
Livvi olo Uralic, Finnic KKPP
Upper Sorbian hsb Indo-European, Slavic UFAL
Uyghur ug Turkic, Southeastern UDT

SSA

English en Indo-European, Germanic MPQA (Wiebe et al., 2005)

N/A
Catalan ca Indo-European MultiBCA and MultiBEU

(Barnes et al., 2018)Basque eu Basque

Norwegian no Indo-European NoReCFine
(Øvrelid et al., 2020)

Table 6: Details of the languages and datasets we used in our experiments.

https://github.com/wenlong1019/MEVTR
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C. Results

hau ibo kin lug luo pcm swa wol yor avg
XLM-R 77.0 49.8 20.1 26.8 33.8 77.1 81.7 44.4 49.6 51.1
Concat 75.9 54.1 33.7 42.4 37.3 76.3 79.1 42.3 46.7 54.2

Cross-modal Attention 77.2 54.0 27.3 32.7 35.1 77.4 82.3 51.8 49.5 54.1
MAD-X TA 44.0 54.5 50.2 53.3 33.0 71.0 69.6 29.8 66.6 52.4
LT-SFT TA 46.5 56.8 52.9 53.8 37.7 74.4 69.5 37.1 69.3 55.3

MEVTR 77.2 54.7 40.5 48.6 44.1 77.7 79.3 47.8 50.6 57.8

Table 7: The complete results of the NER task in cross-lingual transfer and F1 score is used as the
evaluation metric.

ar bm bxr yue myv fo kpv olo hsb ug avg
XLM-R 75.3 23.6 61.0 54.6 48.9 75.3 37.5 62.7 72.7 74.9 58.7
Concat 74.9 24.3 46.1 35.8 38.0 65.6 29.7 53.6 62.1 69.8 50.0

Cross-modal Attention 43.4 22.8 31.6 21.7 33.5 36.6 23.9 41.1 39.1 44.0 33.8
MAD-X TA 70.8 37.2 62.0 64.1 48.5 74.1 35.8 63.4 69.6 36.8 56.2
LT-SFT TA 70.6 34.2 59.5 64.5 45.7 72.9 37.1 62.2 69.2 34.0 55.0

MEVTR 78.3 31.9 61.7 50.0 49.4 75.2 38.9 63.9 72.9 75.0 59.7

Table 8: The complete results of the POS tagging task in cross-lingual transfer and accuracy is used as
the evaluation metric.
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