@inproceedings{liu-etal-2024-mhgrl,
title = "{MHGRL}: An Effective Representation Learning Model for Electronic Health Records",
author = "Liu, Feiyan and
Li, Liangzhi and
Wang, Xiaoli and
Luo, Feng and
Liu, Chang and
Su, Jinsong and
Qian, Yiming",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.985",
pages = "11272--11282",
abstract = "Electronic health records (EHRs) serve as a digital repository storing comprehensive medical information about patients. Representation learning for EHRs plays a crucial role in healthcare applications. In this paper, we propose a Multimodal Heterogeneous Graph-enhanced Representation Learning, denoted as MHGRL, aimed at learning effective EHR representations. To address the challenge posed by data insufficiency of EHRs, MHGRL utilizes a multimodal heterogeneous graph to model an EHR. Specifically, we construct a heterogeneous graph for each EHR and enrich it by incorporating multimodal information with medical ontology and textual notes. With the integration of pre-trained model, graph neural network, and attention mechanism, MHGRL effectively incorporates both node attributes and structural information across a multimodal heterogeneous graph. Moreover, we employ contrastive learning to ensure the consistency of representations for similar EHRs and improve the model robustness. The experimental results show that MHGRL outperforms all baselines on two real clinical datasets in downstream tasks, including EHR clustering and disease prediction. The code is available at https://github.com/emmali808/MHGRL.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2024-mhgrl">
<titleInfo>
<title>MHGRL: An Effective Representation Learning Model for Electronic Health Records</title>
</titleInfo>
<name type="personal">
<namePart type="given">Feiyan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liangzhi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoli</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Feng</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinsong</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiming</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Electronic health records (EHRs) serve as a digital repository storing comprehensive medical information about patients. Representation learning for EHRs plays a crucial role in healthcare applications. In this paper, we propose a Multimodal Heterogeneous Graph-enhanced Representation Learning, denoted as MHGRL, aimed at learning effective EHR representations. To address the challenge posed by data insufficiency of EHRs, MHGRL utilizes a multimodal heterogeneous graph to model an EHR. Specifically, we construct a heterogeneous graph for each EHR and enrich it by incorporating multimodal information with medical ontology and textual notes. With the integration of pre-trained model, graph neural network, and attention mechanism, MHGRL effectively incorporates both node attributes and structural information across a multimodal heterogeneous graph. Moreover, we employ contrastive learning to ensure the consistency of representations for similar EHRs and improve the model robustness. The experimental results show that MHGRL outperforms all baselines on two real clinical datasets in downstream tasks, including EHR clustering and disease prediction. The code is available at https://github.com/emmali808/MHGRL.</abstract>
<identifier type="citekey">liu-etal-2024-mhgrl</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.985</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>11272</start>
<end>11282</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MHGRL: An Effective Representation Learning Model for Electronic Health Records
%A Liu, Feiyan
%A Li, Liangzhi
%A Wang, Xiaoli
%A Luo, Feng
%A Liu, Chang
%A Su, Jinsong
%A Qian, Yiming
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F liu-etal-2024-mhgrl
%X Electronic health records (EHRs) serve as a digital repository storing comprehensive medical information about patients. Representation learning for EHRs plays a crucial role in healthcare applications. In this paper, we propose a Multimodal Heterogeneous Graph-enhanced Representation Learning, denoted as MHGRL, aimed at learning effective EHR representations. To address the challenge posed by data insufficiency of EHRs, MHGRL utilizes a multimodal heterogeneous graph to model an EHR. Specifically, we construct a heterogeneous graph for each EHR and enrich it by incorporating multimodal information with medical ontology and textual notes. With the integration of pre-trained model, graph neural network, and attention mechanism, MHGRL effectively incorporates both node attributes and structural information across a multimodal heterogeneous graph. Moreover, we employ contrastive learning to ensure the consistency of representations for similar EHRs and improve the model robustness. The experimental results show that MHGRL outperforms all baselines on two real clinical datasets in downstream tasks, including EHR clustering and disease prediction. The code is available at https://github.com/emmali808/MHGRL.
%U https://aclanthology.org/2024.lrec-main.985
%P 11272-11282
Markdown (Informal)
[MHGRL: An Effective Representation Learning Model for Electronic Health Records](https://aclanthology.org/2024.lrec-main.985) (Liu et al., LREC-COLING 2024)
ACL
- Feiyan Liu, Liangzhi Li, Xiaoli Wang, Feng Luo, Chang Liu, Jinsong Su, and Yiming Qian. 2024. MHGRL: An Effective Representation Learning Model for Electronic Health Records. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 11272–11282, Torino, Italia. ELRA and ICCL.