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Abstract

Electronic health records (EHRs) serve as a digital repository storing comprehensive medical information about

patients. Representation learning for EHRs plays a crucial role in healthcare applications. In this paper, we propose

a Multimodal Heterogeneous Graph-enhanced Representation Learning, denoted as MHGRL, aimed at learning

effective EHR representations. To address the challenge posed by data insufficiency of EHRs, MHGRL utilizes a

multimodal heterogeneous graph to model an EHR. Specifically, we construct a heterogeneous graph for each EHR

and enrich it by incorporating multimodal information with medical ontology and textual notes. With the integration

of pre-trained model, graph neural network, and attention mechanism, MHGRL effectively incorporates both node

attributes and structural information across a multimodal heterogeneous graph. Moreover, we employ contrastive

learning to ensure the consistency of representations for similar EHRs and improve the model robustness. The

experimental results show that MHGRL outperforms all baselines on two real clinical datasets in downstream tasks,

including EHR clustering and disease prediction. The code is available at https://github.com/emmali808/MHGRL.

Keywords: representation learning, multimodal heterogeneous graph, contrastive learning

1. Introduction

The increasing number of electronic health records
(EHRs) enable deep learning methods to show im-
pressive performance in diverse tasks, such as
medical diagnosis (Wang et al., 2018; Choi et al.,
2018; Zhou et al., 2021), readmission prediction
(He et al., 2022; Cai et al., 2022), medication recom-
mendation (Shang et al., 2019; Yang et al., 2021;
Wu et al., 2022; Yang et al., 2023), etc.

Effective EHR representations are key to achiev-
ing high performance in these tasks. Nevertheless,
gathering and organizing EHR data is complex and
time-consuming due to privacy regulations, limit-
ing the available data quantity. Data from a sin-
gle healthcare system is often insufficient to train
deep learning models, especially for rare diseases
and uncommon conditions like intensive care units.
Early works (He et al., 2016; Ni et al., 2017; Zhu
et al., 2016; Suo et al., 2018) represent an EHR as
unordered sets of features. Sequence models that
overlook structural information need large amounts
of data for training. Therefore, some studies (Choi
et al., 2016b, 2018, 2020; Cai et al., 2022) incor-
porate structural information from EHRs and utilize
graph neural networks (GNNs) to generate EHR
representations. These graph-based methods are
more robust in situations with limited data. How-
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ever, they fail to exploit external information fully,
typically focusing on a single type of data, such as
ontology (Choi et al., 2016b) and clinical notes (Lee
et al., 2020). So there remain challenges in effec-
tively using diverse external information for EHR
representation learning.

To solve the above challenge, we propose a multi-
modal heterogeneous graph (MHG) to model EHR,
by considering both the internal structure and ex-
ternal knowledge information. Figure 1 illustrates
an example of MHG that contains three types of
nodes: diagnosis, procedure, and medication. We
use a medical knowledge graph (MKG) to obtain
the relationship between nodes. To enrich the EHR
representation, each node in the MHG is supple-
mented with multimodal information, including med-
ical textual notes and medical ontology. Further-
more, we propose a Multimodal Heterogeneous
Graph-enhanced Representation Learning (MH-
GRL) to integrate structural and multimodal informa-
tion from MHGs, aiming to generate effective EHR
representations. MHGRL consists of four modules:
multimodal encoding, neighbor aggregation, node
combination, and contrastive learning. We begin by
employing the multimodal encoding module to gen-
erate a multimodal embedding for each node in the
MHG. Next, these node embeddings and the graph
structure, are fed into the neighbor aggregation
module to get high-order neighborhood informa-
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Figure 1: An example of MHG. The blue, purple, and yellow nodes represent the medical codes of
diagnosis, procedure, and medication. Different colored edges represent various types of relationships
between medical codes. Each node is attached with extra multimodal information, including medical
textual notes and medical ontology.

tion for each node. Utilizing an attention mecha-
nism, the node combination module combines all
node embeddings to construct a comprehensive
graph representation. Lastly, we implement the
contrastive learning module to ensure consistency
in representations among similar EHRs obtained
from the same cohorts. In summary, our main con-
tributions are as follows:

• We construct a novel MHG to accurately model
EHR for representing real clinical conditions.

• We propose an EHR representation learning
model, denoted by MHGRL, to incorporate
both the internal structure and external knowl-
edge information.

• The experimental results show that MHGRL
outperforms all baselines on two real-world
EHR datasets in two downstream tasks: EHR
clustering and disease prediction, demonstrat-
ing that MHGRL can learn effective EHR rep-
resentations.

2. Related Work

2.1. EHR Representation Learning

Deep learning methods are widely used in the field
of EHR representation. Choi et al. (2016c) uti-
lize the sequential order of an EHR and the co-
occurrence of medical codes to simultaneously
learn the representation. Hong et al. (2017) ex-
pand upon the approach of (Choi et al., 2016c) by
considering the temporal relationships within clini-
cal events. Choi et al. (2016a) propose Med2Vec,
a scalable two-layer neural network for learning

lower dimensional representations for medical con-
cepts. However, they ignore the valuable structural
information that can enhance medical practice.

Later approaches (Choi et al., 2016b, 2018; Wu
et al., 2019; Choi et al., 2020; Liu et al., 2020; Lee
et al., 2020; Cai et al., 2022) learn the represen-
tations by incorporating the hierarchical or graph-
ical information. GRAM (Choi et al., 2016b) em-
ploys a static hierarchical ontology and MiME (Choi
et al., 2018) encodes multilevel relationships be-
tween medical codes, both of which can be viewed
as references for the graph structure. Recently,
GNNs have been widely used for graph represen-
tation learning. And GNNs with different neigh-
bor aggregation schemes are proposed (Kipf and
Welling, 2016; Veličković et al., 2018; Schlichtkrull
et al., 2018; Busbridge et al., 2019; Rampášek et al.,
2022; Gravina et al., 2023; Hu et al., 2020), aiming
to map the intricate information in graphs into a
vector by capturing both the feature and topological
information. Some approaches (Liu et al., 2020;
Cai et al., 2022) utilize GNN to learn the relation-
ships between medical codes. Nevertheless, most
of them include only limited information to represent
the clinical conditions. In this work, we construct
each EHR into a MHG that contains structural infor-
mation and external knowledge to solve the issue
of data insufficiency.

2.2. Contrastive Learning

Contrastive learning is an effective framework to
capture the consistency of feature representations
under different views (Qiu et al., 2020; Zhu et al.,
2021; Wei et al., 2022; Xia et al., 2022). Cai et al.
(2022) integrates hypergraph learning and con-
trastive learning in EHR representation learning.
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They treat different views of patient embeddings as
positive samples to maximize the mutual informa-
tion. In this work, the contrastive learning method
is applied to ensure the consistency of representa-
tions for similar EHRs. Positive samples are con-
structed by utilizing EHRs from the same cohort,
while negative samples are derived from distinct co-
horts. We optimize representations by measuring
the similarities between each EHR pair. Conse-
quently, the representations of similar EHRs will
demonstrate consistency, whereas those of dissim-
ilar pairs will manifest divergence.

3. Preliminaries

Electronic Health Records. Each EHR consists
of medical codes, including diagnosis, procedure,
and medication codes. The D,P,M are the overall
diagnosis, procedure, and medication sets, while
|∗| is the cardinality of the set. So an EHR is de-
fined as X = {Vd,Vp,Vm}, where Vd ∈ D, Vp ∈ P

and Vm ∈M . The medical codes of diagnosis and
procedure are mapped to the International Classifi-
cation of Diseases (ICD-9) (Slee, 1978), while the
medical codes of medication are obtained from the
National Drug Code 1 (NDC).

We propose a graph model to represent EHRs.
Specifically, we build EHRs into heterogeneous
graphs based on the MKG constructed from EHRs.
To extract relationships from EHRs, we utilize co-
occurrence information to establish connections
between diverse medical entities.

Medical Knowledge Graph. The MKG K

= (N,R) is a set of triples in the form (h, r, t),
where N= {D

⋃

P
⋃

M} is a set of entities, R

is a set of relationships, h, t ∈ N and r ∈
R. MKG contains three entity types TN =
{diagnosis, procedure,medication} and three rela-
tionship types TR = {rdp, rdm, rpm}. rdp represents
the diagnosis-procedure relationship, rdm repre-
sents the diagnosis-medication relationship, and
rpm represents the procedure-medication relation-
ship. MKG can reveal the clinical relationships be-
tween medical entities. Thus, we use it to construct
a heterogeneous graph for an EHR as below.

Heterogeneous Graph. Given an EHR, we em-
ploy the MKG to construct its heterogeneous graph,
represented by G = {V, E , TN , TR}, with a set of
nodes V and a set of edges E . We have V =
{Vd

⋃

Vp
⋃

Vm}. Each node in V is mapped to
one entity in the MKG. Edge set E can be obtained
by Algorithm 1.

To capture more useful information from EHRs,
we enhance the heterogeneous graph by incorpo-
rating multimodal data, such as medical textual

1https://www.fda.gov/drugs/

drug-approvals-and-databases/

national-drug-code-directory

Algorithm 1: Edge Set Construction

Input: The medical knowledge graph K, the
node sets of Vd = {vd1 , . . . , v

d
|Vd|},

Vp = {vp1 , . . . , v
p

|Vp|}, and

Vm = {vm1 , . . . , vm|Vm|}

Output: The edge set E

E ← ∅
for each vd ∈ Vd do
for each vp ∈ Vp do

if (vd, rdp, v
p) ∈ K then

E ← E ∪ {(vd, vp)}
end

for each vm ∈ Vm do

if (vd, rdm, vm) ∈ K then

E ← E ∪ {(vd, vm)}
end

for each vp ∈ Vp do
for each vm ∈ Vm do

if (vp, rpm, vm) ∈ K then
E ← E ∪ {(vp, vm)}

end

return E

notes and medical ontology, into its nodes. A for-
mal definition is as follows.

Multimodal Heterogeneous Graph. Given a
heterogeneous graph G, we enrich it with multi-
modal data to construct a MHG, denoted by G =
{V̂, E , TN , TR}. Each node in V̂ is associated with
multimodal contents of medical textual notes and
medical ontology.

To achieve this enrichment, we employ large lan-
guage models (LLMs) like ChatGPT (Ouyang et al.,
2022) to generate high-quality medical textual notes
for each node, by designing appropriate prompt
templates. We utilize the prompt: “Please give a
brief definition of @NAME.”, where @NAME rep-
resents medical terminology. To construct medi-
cal ontology for each node, we leverage the ICD-
9 (Slee, 1978) and ATC ontology (Cheng et al.,
2017). Figure 1 illustrates an example of MHG.
The blue, purple, and yellow nodes represent the
diagnosis, procedure, and medication codes, re-
spectively. The purple, yellow, and red lines repre-
sent the relationship rdp, rdm, and rpm, respectively.
We use the medical terminology of node instead
of its corresponding medical code for illustration.
Figure 1 shows the relevant multimodal information
of “Stroke”, “Insulin”, and “Coronary Bypass”.

4. Our Model

We propose a novel model, denoted by MHGRL,
that learns representations of EHRs based on the

https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-code-directory
https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-code-directory
https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-code-directory
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Figure 2: The architecture of our MHGRL model. There are four modules: multimodal encoding, neighbor
aggregation, node combination, and contrastive learning.

proposed MHG. Figure 2 shows an overview of
MHGRL. There are four modules: multimodal en-
coding, neighbor aggregation, node combination,
and contrastive learning.

Problem Statement. Given two MHGs, repre-
sented by G1 and G2, the objective is to learn ef-
fective representations for evaluating the similarity
between G1 and G2.

4.1. Multimodal Encoding Module

Given an MHG, denoted as G = {V̂, E ,OV ,RE}, this
module encodes medical information of each node
vn ∈ V̂ (n ∈ [1,|V̂|]) into a fixed-size embedding
mn ∈ R

d, where d is the embedding dimension.
Given a node vn, we start by deriving its textual
notes embedding tn ∈ R

dt and ontology embed-
ding on ∈ R

do , separately. We adopt BERT (De-
vlin et al., 2019) as the language representation
model to generate tn with 768 dimensions. We
model the medical ontology as a directed acyclic
graph (DAG) (Christofides, 1975). The DAG is con-
structed based on the relationships between medi-
cal codes, and the ontology embedding of node vn
can be generated from its corresponding nodes in
the DAG. To incorporate medical ontology knowl-
edge, we utilize the graph attention network (GAT)
(Veličković et al., 2018) to capture the structural
information from DAG. We initialize each node ci in
the DAG with a vector ei ∈ R

dx . Then, we employ
the bottom-to-top and top-to-bottom strategies to
update the node embeddings. First, the bottom-
to-top strategy enhances each node by embed-

ding the information from its children. Second, the
top-to-bottom strategy updates each leaf node em-
bedding by incorporating the information learned
from its ancestor in the previous strategy. Through
these steps, we derive the ontology embedding on
of node v∗n.

Given a DAG, the bottom-to-top strategy obtains
the embedding e′i ∈ R

dx of ci in the DAG by inte-
grating the representations of its children.

e′i =
∑

j∈ch(i)

αijWej

αij =
exp(LReL(aT [Wei||Wej ]))

∑

k∈ch(i)

exp(LReL(aT [Wei||Wek]))

(1)

Here, ch(i) is the indices of ci’s children (including
i). W ∈ R

dx×dx and a ∈ R
2dx are weight matrix

and weight vector, respectively. LReL(·) denotes
the LeakyReLU nonlinearity and || represents the
concatenation operation.

Then, the top-to-bottom strategy generates the
embedding oi ∈ R

do of ci by combining the embed-
dings from its ancestors.

oi =
∑

j∈anc(i)

α′
ijW

′e′j

α′
ij =

exp(LReL(a′T [W ′e′i||W
′e′j ]))

∑

k∈anc(i)

exp(LReL(a′T [W ′e′i||W
′e′k]))

(2)

Here, anc(i) is the indices of ci’s ancestors (in-
cluding i). W ′ ∈ R

do×dx and a′ ∈ R
2do are the
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learnable parameters as W and a in Equation 1.

To combine the text embedding tn and the ontol-
ogy embedding on into a joint embedding mn ∈ R

d,
we normalize them into a shared space using the
following procedure.

t′n = f(tn,W1, b1), o′n = f(on,W2, b2) (3)

Here, f(·) is a linear project function, W1 ∈ R
d
2
×dt ,

W2 ∈ R
d
2
×do and b1, b2 ∈ R

d
2 are the projection

parameters.

Finally, we generate the embedding of node vn
by concatenating the projected embeddings as:
mn = [t′n||o

′
n], mn ∈ R

d, where || represents the
concatenation operation.

4.2. Neighbor Aggregation Module

With the multimodal encoding module, the node

embeddings of G can be denoted as M ∈ R
|V̂|×d.

We then develop a neighbor aggregation module
with L layers of GNNs to consolidate high-order
neighborhood information for each node.

Given the adjacency matrix A of G as the graph
structure and the initial node embeddings of H(0) =
M , the aggregated embeddings at the lth layer of

H(l) ∈ R
|V̂|×dl can be formulated as follows.

H(l) = σ(UpdateFunction(H(l−1), A)) (4)

where UpdateFunction(·) represents the function
used to update node embeddings and varies de-
pending on the chosen GNN, and σ(·) is an acti-
vation function. Finally, we extract the aggregated
embedding of hn ∈ R

d for the node vn from the

node embeddings H(L) ∈ R
|V̂|×d in the last layer of

GNNs. The aggregated node embeddings can ex-
ploit higher-order heterogeneous graph structures.
Thus, hn incorporates both multimodal and struc-
tural information for vn.

4.3. Node Combination Module

To aggregate node embeddings into a graph repre-
sentation of g ∈ R

d, we adopt an attention mecha-
nism in this module. Different from the multimodal
embedding mn, the aggregated embedding hn in-
corporates the heterogeneous neighborhood infor-
mation of vn. That is, if the difference is bigger, vn
may attain more complex relationships with other
nodes, and should receive a higher attention weight.
By summing the initial multimodal embedding mn

and the aggregated embedding hn, both the origi-
nal and structural information are preserved in the
graph representation. This helps to capture more
important information and make our model more
robust to the noisy neighborhood data in structural

information. Thus, the graph representation g ∈ R
d

can be formulated as follows.

g =

|V̂|
∑

n=1

sigmoid((mn ⊙ w)Thn)(mn + hn) (5)

Here, sigmoid((mn ⊙ w)Thn) calculates the atten-
tion weight for node vn. w ∈ R

d is the learnable
parameters and ⊙ is element-wise multiplication.

4.4. Contrastive Learning Module

This module uses contrastive learning to guide the
model in learning effective graph representations.
The representations generated by the node com-
bination module reflect the node and structure in-
formation in EHRs. To ensure the consistency of
representations for similar EHRs, we employ con-
trastive learning to maximize mutual information.
Given two MHGs of G1 and G2, we first obtain two
graph representations of g1 and g2 from the node
combination module. Then this module utilizes a
neural tensor network (Socher et al., 2013) to cap-
ture the interaction signals, denoted by s(G1,G2).
The interaction signals are computed below.

s(G1,G2) = σ(g1
TW3g2 +W4

[

g1
g2

]

+ b3) (6)

Here, W3 ∈ R
d×N×d and W4 ∈ R

N×2d are the
weight matrices, and b3 ∈ R

N is a bias vector. N

is a hyperparameter controlling the grain size of
interaction signals for graph representation pairs.

After that, we feed the interaction signals of
s(G1,G2) into a fully connected softmax layer to
output similarity score ŷ. The end-to-end model is
trained to minimize the cross-entropy loss function:

L(y, ŷ) = −[ylog(ŷ) + (1− y)log(1− ŷ)] (7)

where y ∈ {0, 1} indicates whether two EHRs are
similar or not.

5. Experimental Results

5.1. Setup

5.1.1. Datasets

MIMIC-III (Johnson et al., 2016) and MIMIC-IV
(Johnson et al., 2021) are two real-world EHR
datasets, containing demographics, procedures,
medications, laboratory results, etc. MIMIC-III is
obtained from over 40,000 patients admitted to hos-
pitals from 2001 to 2012. MIMIC-IV is an update
for MIMIC-III, incorporating data on admissions to
the intensive care unit from 2008 to 2019.
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MIMIC-III MIMIC-IV

Cohort # of EHRs Cohort # of EHRs

CA 2,532 CA 806
CS 1,290 CS 1,627
ND 1,131 ND 3,445
SEI 1,121 EH 2,465
AVD 857 ER 1089
SEP 1021 SID 855

Table 1: The statistics of EHR cohorts.

We construct two MKGs respectively for two
datasets. Then, we conduct cohort studies on dis-
eases (Zhu et al., 2016). We select six diseases
that appear frequently in two datasets respectively.
These diseases are widely studied and have signif-
icant implications in healthcare applications. More-
over, they exhibit correlations that present intricate
challenges in the context of joint diagnosis. The six
cohorts of MIMIC-III include Coronary Atherosclero-
sis (CA), Cesarean Section (CS), Normal Delivery
(ND), Subendocardial Infarction (SEI), Aortic Valve
Disorders (AVD), and Septicaemia (SEP), and six
cohorts of MIMIC-IV consist of CA, CS, ND, Es-
sential Hypertension (EH), Suspected Infectious
Disease (SID) and Esophageal Reflux (ER). The
statistics of EHR cohorts are in Table 1.

We conduct extensive experiments on two tasks:
EHR clustering and disease prediction. For EHR
clustering, we generate MHGs using diagnosis, pro-
cedure, and medication nodes. Then, we perform
the k-means clustering based on EHR represen-
tations. We use the cohorts as ground truth for
evaluating the clustering results. For disease pre-
diction, we aim to predict the cohort to which each
EHR belongs accurately. Notably, for this task, we
only rely on procedure and medication nodes to
construct MHGs. Our approach is grounded in the
assumption that procedure and medication infor-
mation adequately reflects the patient’s disease
condition. During testing, for each EHR in the test
set, we retrieve the K most similar EHRs from the
training set based on their representations. The
final predicted disease label is determined through
a voting mechanism, where the label that appears
most frequently among the K retrieved records is
selected.

We generate our training, validation, and test set
with a ratio of 6:2:2. For each EHR, we construct
five similar pairs as positive samples by randomly
selecting five other EHRs from the same cohort.
Simultaneously, we build five dissimilar pairs as
negative samples by randomly selecting EHRs from
distinct cohorts.

5.1.2. Competitors

Given our emphasis on EHR representation learn-
ing, we select some EHR representation learning
models as competitors. Besides, as our method
performs EHR representation learning based on
GNNs, we evaluate the performance of various
GNNs. Moreover, the current LLMs are tuned to fol-
low instructions and trained on extensive datasets
to obtain zero-shot capabilities. So we design
prompts to call the interface of ChatGPT in the
disease prediction task, as shown in Table 4. So
we select the following competitors.

• Static Representation Model: One-hot.

• EHR Representation Learning (RL) Model:
GRAM (Choi et al., 2016b), MiME (Choi et al.,
2018), and GCT (Choi et al., 2020).

• GNN-based Model: GCN (Kipf and Welling,
2016), GAT (Veličković et al., 2018), RGCN
(Schlichtkrull et al., 2018), RGAT (Busbridge
et al., 2019), GPS (Rampášek et al., 2022),
and A-DGN (Gravina et al., 2023).

• LLM: ChatGPT (Ouyang et al., 2022).

5.1.3. Parameter Settings

We implement the model using Pytorch 2.0.1 and
utilize the Adam optimizer with 30 epochs. We set
the default batch size to 256, the learning rate to
0.0001, and the dropout rate to 0.4. The GNN we
used is A-DGN and we set the number of layers L

to 2. The dimension of the projected embeddings
is 250 on MIMIC-III and 100 on MIMIC-IV, and N in
our neural tensor network is 25 on MIMIC-III and 30
on MIMIC-IV. For baselines, the feature dimension
is 250. We carry the experiments on a Dell server
with 4 NVIDIA GeForce RTX 3090.

5.2. Performance

For EHR clustering, we choose three widely used
evaluation metrics: Purity, normalized mutual in-
formation (NMI), and rand index (RI). We set k=6
for k-means algorithm. For disease prediction, we
adopt the evaluation metric Accuracy and set K=1,
3 and 5. As the experimental results in Table 2 and
Table 3, our MHGRL significantly outperforms all
baselines on two tasks.

Table 2 shows the results of EHR clustering. On
MIMIC-III, our MHGRL achieves a Purity of 0.9761,
a NMI of 0.9390, and a RI of 0.9811, outperform-
ing the strongest baseline of RGCN by 2.89%,
6.96%, and 2.21%, respectively. On MIMIC-IV, our
model achieves a Purity of 0.8455 and a NMI

of 0.7515, outperforming the strongest baseline of
GPS by 0.39% and 2.14%, respectively.
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Category Model
MIMIC-III MIMIC-IV

Purity NMI RI Purity NMI RI

Static One-hot 0.6052 0.5023 0.7895 0.6093 0.4840 0.7587

RL
MiME 0.4368 0.2219 0.7041 0.5666 0.3773 0.7346
GRAM 0.4840 0.3315 0.7589 0.6050 0.4517 0.7615
GCT 0.6224 0.5137 0.8102 0.7473 0.5789 0.8142

GNN-based

GCN 0.9265 0.8243 0.9489 0.7464 0.6208 0.8738
GAT 0.7957 0.7345 0.8753 0.7935 0.6905 0.8901

RGCN 0.9472 0.8694 0.9590 0.7799 0.6744 0.8866
RGAT 0.9170 0.8373 0.9331 0.7823 0.6711 0.8817
A-DGN 0.6285 0.5101 0.8015 0.7410 0.6079 0.8681
GPS 0.9334 0.8455 0.9530 0.8416 0.7301 0.9146

MHGRL 0.9761 0.9390 0.9811 0.8455 0.7515 0.9141

Table 2: The EHR clustering results on two datasets. The best performance is highlighted in bold while
the second best is marked with an underline.

Category Model
MIMIC-III MIMIC-IV

K=1 K=3 K=5 K=1 K=3 K=5

Static One-hot 0.6524 0.6732 0.6795 0.4315 0.5010 0.5272

RL GRAM 0.5368 0.5493 0.5644 0.4898 0.5078 0.5292

GNN-based

GCN 0.6952 0.7165 0.7197 0.4820 0.5194 0.5408
GAT 0.7033 0.7285 0.7234 0.4913 0.5287 0.5603

RGCN 0.6920 0.7291 0.7454 0.4810 0.5078 0.5384
RGAT 0.7008 0.7285 0.7341 0.5005 0.5282 0.5646
A-DGN 0.5632 0.5820 0.5833 0.4456 0.4830 0.5131
GPS 0.6983 0.7040 0.7209 0.5102 0.5292 0.5539

LLM ChatGPT 0.3206 0.3226 0.3116 0.0782 0.0779 0.0771

MHGRL 0.7376 0.7514 0.7657 0.5398 0.5661 0.5855

Table 3: The disease prediction results on two datasets. The best performance is highlighted in bold while
the second best is marked with an underline.

Table 3 shows the results of disease prediction.
On MIMIC-III, MHGRL achieves the Accuracy of
0.7376, 0.7514 and 0.7657, when K=1, 3 and 5, re-
spectively. The improvement is 3.43% (vs. GAT),
2.23% (vs. RGCN), and 2.03% (vs. RGCN), re-
spectively. On MIMIC-IV, MHGRL achieves the
Accuracy of 0.5398, 0.5661 and 0.5855, when K=1,
3 and 5, respectively. The improvement is 2.96%
(vs. GPS), 3.69% (vs. GPS), and 2.09% (vs.
RGAT), respectively. Moreover, we observe that:

(1) Both the static and early EHR representation
learning models show worse performance com-
pared to the GNN-based models. Among them,
One-hot and GRAM simply treat an EHR as a med-
ical code sequence, ignoring relationships between
medical codes. MiME and GCT only capture limited
relationships between medical codes. Compared
to baselines, our model incorporates more infor-
mation and captures important medical information
using the attention mechanism.

(2) We have designed prompts and utilized the
ChatGPT for disease prediction, by obtaining its

top-K responses. The performance of ChatGPT
on MIMIC-III, with K = 1, yields an Accuracy

of 0.3206. However, on MIMIC-IV, the Accuracy

drops seriously to 0.0782. Due to the limitation of
tokens, it is difficult to provide additional informa-
tion to ChatGPT. Predicting diseases only based
on limited information might be challenging.

(3) The results on MIMIC-IV are mostly worse
than MIMIC-III. The reason might be that MIMIC-IV
contains more overlapping diseases compared to
MIMIC-III, as shown in Figure 3. So it is difficult to
distinct dissimilar EHRs of MIMIC-IV.

5.3. Ablation Study

We conduct an ablation study to analyze the effects
of different modalities of data, attention mechanism,
and contrastive learning in our model. Five variants
are implemented:

• without (w/o) multimodal information: remove
the medical ontology and textual notes informa-
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Prompt
Response

Label
K=1 K=3 K=5

Requirement: please predict the disease based on the procedure and

medication information.

Procedures: [‘Other incision with drainage of skin and subcuta-

neous tissue’, ‘Nonexcisional debridement of wound, infection or burn’]

Medications: [‘Anilides’, ‘Other irrigating solutions’, ‘Softeners, emol-

lients’, ‘Contact laxatives’, ‘Antibiotics’, ‘Heparin group’]

Please predict the disease name from the following six types: [‘Normal

Delivery’, ‘Essential Hypertension’, ‘Cesarean Section’, ‘Esophageal

Reflux’, ‘Suspected Infectious Disease’, ‘Coronary Atherosclerosis’]

NO NEED FOR ANY EXPLANATION!

ER SID SID ER

Table 4: An example of prompt and ChatGPT responses for the disease prediction task. The error
results are marked in red. The prompt generation process involves the following steps: (i) converting
each medical code in an EHR into medical terminology; (ii) filling in the underlined positions with actual
procedure and medication information extracted from the EHR.

EH

ND

ER

SIDCS

CA

EH

ND

ER

SIDCS

CA

CS

CA ND
SEI

SEP

AVD

CS

CA ND
SEI

SEP

AVD

Figure 3: Disease overlapping on two datasets.

tion, and randomly initialize the representation
of nodes.

• without (w/o) medical textual notes: remove
textual notes information.

• without (w/o) medical ontology: remove medi-
cal ontology information.

• without (w/o) attention mechanism: not use
attention mechanism in node combination.

• without (w/o) contrastive learning: without con-
structing similar and dissimilar EHR pairs, di-
rectly predict the cohorts.

Since the results of the two datasets are consistent,
only the results of MIMIC-III are shown in Table 5.
All modalities of data contribute to EHR representa-
tion learning. Using the attention mechanism can
further boost the performance of representation
learning. As shown in Table 5, contrastive learning
also contributes to performance.
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Figure 4: The training time of one epoch.

5.4. Efficiency

We further evaluate the efficiency of our model.
We record the average training time of one epoch.
Figure 4 shows that MHGRL takes comparable
training time to strong baselines for achieving the
best performance on downstream tasks.

5.5. Visualization

We use t-SNE2 to visualize the high-dimensional
EHR representations in the test set on MIMIC-III.
Each EHR is plotted as a point in a two-dimensional
space. In Figure 5, the points with different col-
ors represent the EHRs in different cohorts. Our
MHGRL shows the best results. The EHRs from
the same cohort are plotted closely together, while
those from different cohorts are separated. MiME
and GRAM show the worst results. The results of

2https://lvdmaaten.github.io/tsne/
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Model
EHR clustering Disease prediction

Purity NMI RI K=1 K=3 K=5

MHGRL 0.9761 0.9390 0.9811 0.7376 0.7514 0.7657

w/o multimodal information 0.6562 0.5590 0.8135 0.5931 0.6126 0.6010

w/o medical textual notes 0.9755 0.9343 0.9805 0.7319 0.7469 0.7531

w/o medical ontology 0.9617 0.9089 0.9719 0.7131 0.7236 0.7382

w/o attention mechanism 0.9679 0.9177 0.9753 0.6714 0.6942 0.7003

w/o contrastive learning 0.7142 0.6670 0.8564 0.7344 0.7502 0.7542

Table 5: Ablation study results on MIMIC-III.

MiME GCNGRAM GAT

RGATRGCNGPS

MHGRL

GCT A-DGNA-DGN

One-hot

Figure 5: The visualization results of EHR clustering on MIMIC-III.

One-hot, GCT, and A-DGN look a little better be-
cause the EHRs can be separated into two parts.
GCN, GAT, RGCN, RGAT, and GPS perform better
by dividing the EHRs into several groups.

6. Conclusion

This paper proposes a novel model, denoted by MH-
GRL, to learn effective EHR representations. We
first convert each EHR into a heterogeneous graph
using the multimodal knowledge graph. To solve
the problem of data insufficiency, every node in the
graph is attached with multimodal information, in-
cluding medical textual notes and medical ontology.
In addition, we design an attention mechanism to
aggregate node information and apply contrastive
learning to ensure consistency among representa-
tions of similar EHRs and improve model robust-
ness. The experimental results show that our MH-
GRL outperforms all baselines on two real datasets
by learning effective EHR representations. In the fu-
ture, we will incorporate additional information into
our model, such as medical images, demographic
information and temporal clinical data, which would
help us capture the evolving information and more
important clinical conditions.
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learning and conducts experiments on two public
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