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Abstract
Rhetorical Role Labeling (RRL) of legal judgments is essential for various tasks, such as case summarization,
semantic search and argument mining. However, it presents challenges such as inferring sentence roles from
context, interrelated roles, limited annotated data, and label imbalance. This study introduces novel techniques to
enhance RRL performance by leveraging knowledge from semantically similar instances (neighbours). We explore
inference-based and training-based approaches, achieving remarkable improvements in challenging macro-F1
scores. For inference-based methods, we explore interpolation techniques that bolster label predictions without
re-training. While in training-based methods, we integrate prototypical learning with our novel discourse-aware
contrastive method that work directly on embedding spaces. Additionally, we assess the cross-domain applicability
of our methods, demonstrating their effectiveness in transferring knowledge across diverse legal domains.
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1. Introduction

In an era of rapid digitalization and exponential
growth of legal case volumes, the demand for au-
tomated systems to assist legal professionals in
tasks like extracting key case elements, summa-
rizing cases, and retrieving relevant cases has
surged (Zhong et al., 2020). At the core of these
tasks lies Rhetorical Role Labeling (RRL), which in-
volves assigning functional roles to the sentences
in the document such as preamble, factual content,
evidence, reasoning, etc. Legal documents, char-
acterized by their extensive length, lengthy sen-
tences with unusual word order, frequent cross-
references, extensive citation usage, and intricate
lexicon, often feature uncommon expressions from
everyday language and borrowed terms from vari-
ous languages to the extent that they are referred
to as a sub-language of legalese (Chalkidis et al.,
2022; Haigh, 2013).

The task of RRL faces several distinctive chal-
lenges. Firstly, contextual dependencies, influ-
enced by surrounding sentences and the case’s
context, are pivotal in discerning rhetorical role of
each sentence, distinguishing RRL as a sequen-
tial sentence classification task. Secondly, the in-
tertwining nature of rhetorical roles further compli-
cates the task. For instance, the rationale behind
a judgment (Ratio of the decision) often overlaps
with Precedents and Statutes, necessitating a nu-
anced understanding of these roles’ intricate dis-
tinctions (Bhattacharya et al., 2021). Thirdly, ob-
taining extensive annotated data for specialized
domains like law is expensive, requiring expert an-
notators. Lastly, certain rhetorical roles are dis-

proportionately represented in the dataset, leading
to significant class imbalance (Malik et al., 2022;
Bhattacharya et al., 2021). Traditional up/down
sampling methods struggle to fully address this
challenge due to the task’s nature, which involves
sequences of sentences at the document level.

Initially RRL task is formulated as sentence
classification, treating each sentence in isola-
tion (Ahmad et al., 2020; Walker et al., 2019).
Researchers later adopted it as sequential sen-
tence classification, addressing contextual depen-
dencies between sentences (Bhattacharya et al.,
2021; Ghosh and Wyner, 2019; Malik et al., 2022;
Kalamkar et al., 2022). They introduced a two-
level hierarchical model, encoding sentences in-
dependently at the lower level and contextualizing
them with neighbouring sentences at the higher-
level. While this approach effectively addressed
the first challenge of RRL, other challenges re-
main unaddressed. Recently, Santosh et al. 2023
aimed to address data scarcity through data aug-
mentation, but methods like word deletion, sen-
tence swapping and back-translation could intro-
duce noise and disrupt coherence. However, this
approach did not effectively address label imbal-
ance and intricate role intertwining.

In this work, we hypothesize that harnessing
knowledge from semantically and contextually sim-
ilar instances can provide valuable insights to
grasp a broader context and reveal underlying
rare patterns. This can enhance the understand-
ing of complex label-semantics relationships, im-
prove nuanced label assignments and equip the
model to handle less common labels, thus ad-
dressing the distinctive challenges of RRL. We ex-



11297

plore two approaches for harnessing this knowl-
edge: one directly at inference time without addi-
tional parameters or re-training (Sec. 4), and the
other during training by incorporating auxiliary loss
constraints (Sec. 5). In the inference-based ap-
proaches, we interpolate the label distribution pre-
dicted by a model with the distribution derived from
analogous instances in the training dataset, em-
ploying nearest neighbor-based, single, and multi-
ple prototype-based methodologies. These meth-
ods enhance performance, particularly on more
challenging macro-F1 scores, without requiring re-
training. For training-based approaches, we inte-
grate contrastive and prototypical learning which
operate directly on the embedding space, leverag-
ing neighborhood relationships. Additionally, we
introduce a novel discourse-aware contrastive loss
to address the contextual nature of the task. Our
experimental results on four datasets from the In-
dian Jurisdiction validate our proposed methods.

While it is common to develop models for spe-
cific courts or domains due to unique vocabulary,
complex linguistic structures and specific writing
styles, such specialization can hinder the adapt-
ability of these models beyond their original con-
text. In rhetorical role labeling, models might
memorize context-specific vocabulary rather than
understanding the underlying semantics, making
cross-domain applications challenging (Savelka
et al., 2021). In such cases, developing a model
for a new context typically requires annotating a
new dataset, which can be expensive. In our work,
we assess the cross-domain generalizability of our
methods and observe that they enhance model’s
ability to transfer across different legal domains
compared to a baseline model lacking these auxil-
iary techniques (Sec. 6).

2. Related Work

Rhetorical Role Labeling Initial efforts of RRL
aimed to facilitate summarization tasks (Sara-
vanan et al., 2008; Farzindar and Lapalme, 2004).
Saravanan et al. 2008 employed Conditional Ran-
dom Fields on hand-crafted features, to iden-
tify seven rhetorical roles in Indian state High
Court documents. Savelka and Ashley 2018
categorized text into functional segments (Intro-
duction, Background, Analysis, and Footnotes)
and issue-specific segments (Analysis and Con-
clusion) using CRF on a corpus of US trade se-
cret and cybercrime decisions. Walker et al. 2019
adopted feature-based methods for segmenting
U.S. Board of Veterans’ Appeals decisions. Ne-
jadgholi et al. 2017 focused on identifying factual
and non-factual sentences in Canadian immigra-
tion case documents, using FastText embeddings
for query-oriented search engine application.

Recently, deep learning-based classification
have been applied to this task in various con-
texts, such as Japanese documents (Yamada
et al., 2019), Indian Supreme Court documents
(Bhattacharya et al., 2021; Ghosh and Wyner,
2019; Malik et al., 2022; Kalamkar et al., 2022).
These methods adopt hierarchical approaches to
account for the sequential sentence classification
nature of the task, drawing context from sur-
rounding sentences. This has been the defacto
architecture for this task, with modifications rang-
ing from word embeddings initially (Bhattacharya
et al., 2021; Ghosh and Wyner, 2019) to BERT
based contextualized embeddings recently (Malik
et al., 2022; Kalamkar et al., 2022). Recently,
Santosh et al. 2023 reformulated the task as
span-level sequential classification that segment
the document into sets of contiguous sequence
of sentences (spans) and assign them labels. In
our work, we make use of the Indian Supreme
Court corpus from prior research, proposing algo-
rithms to effectively enhance their performance
leveraging the knowledge from analogous neigh-
bourly instances both at inference time without
re-training, and also during training. Recently,
Savelka et al. 2021 investigated the transferability
of rhetorical segmentation models across seven
jurisdictions and six languages, including Canada,
the US, Czech Republic, Italy, Germany, Poland
and France. In this study we also examine cross-
domain performance on Indian Supreme Court
documents across different legal contexts.

Leveraging Neighborhood Information Utilizing
neighborhood information offers two pathways:
one during inference and the other during train-
ing. Inference-time methods, commonly applied
in few-shot classification, facilitate label assign-
ment based on proximity to training examples with-
out any re-training (Snell et al., 2017; Yang and
Katiyar, 2020). Various techniques include em-
ploying all examples to identify nearest neighbors
for the final label assignment (Yang and Katiyar,
2020) and constructing prototypes based on exam-
ples of the same label (Snell et al., 2017), among
others. This concept has gained widespread at-
tention as retrieval-augmented models in various
tasks, including language modeling (Khandelwal
et al., 2019; Zheng et al., 2021), machine transla-
tion (Zheng et al., 2021)named entity recognition
(Wang et al., 2022b) and multi-label text classifica-
tion (Wang et al., 2022a).

On the training side, methods like contrastive
learning have been applied in self-supervised rep-
resentation learning (Gao et al., 2021), wherein
neighbour constraints are enforced in the embed-
ding space through data augmentation. More
recently, they have been extended to super-
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vised learning scenarios using instances with the
same label as neighbors (Khosla et al., 2020).
Another approach is prototypical learning (Ding
et al., 2020), which designates representative pro-
totypes for each class as guiding points to enforce
neighborhood constraints on data instances. In
this study, we harness both training and inference-
based neighbour learning strategies. Additionally,
we explore the their capabilities in cross-domain
scenarios, within the context of the RRL task.

3. Task, Datasets, Baseline

Task Given a judgment document x =
{x1, x2, . . . , xm} with m sentences as the in-
put, where xi = {xi1, xi2, . . . , xin} represents the
ith sentence containing n tokens and xjp refers
to the pth token in the jth sentence, the task of
rhetorical role labeling is to predict sequence of
l = {l1, l2, . . . , lm} where li is the rhetorical role
corresponding to sentence xi and li ∈ L which is
set of predefined rhetorical role labels.

Data We experiment on four datasets - (i) Build
(Kalamkar et al., 2022) comprises judgments from
Indian supreme court, high court, and district
courts. It includes publicly available train and
validation splits, with 184 and 30 documents
respectively with a total of 31865 sentences (an
average of 115 per document). These documents
pertain to tax and criminal law cases and are
annotated with 13 rhetorical role labels, including
‘None’. Given the absence of a public test dataset,
we utilize the training dataset for both training
and validation, evaluating performance on the
validation partition. (ii) Paheli (Bhattacharya
et al., 2021) features 50 judgments from the
Supreme Court of India across five domains:
Criminal, Land and Property, Constitutional,
Labour and Industrial, and Intellectual Property
Rights, annotated with 7 rhetorical roles. They
have total of 9380 sentences with an average of
188 per document. (iii) M-CL / (iv) M-IT (Malik
et al., 2022) encompasses judgments from the
Supreme Court of India, High Courts, and Tribunal
courts. It includes two subsets: M-CL, comprising
50 documents related to Competition Law, and
M-IT, with 50 documents related to Income Tax
cases. Both subsets are annotated with 7 rhetori-
cal role labels. M-CL has 13,328 sentences (avg.
of 266 per document) and M-IT has a total of 7856
sentences (avg. of 157 per document). We split
(at document level) Paheli/M-CL/M-IT into 80%
train, 10% validation, and 10% test set.

Baseline All of our experiments in this study are
built on top of the Hierarchical Sequential La-
beling Network, which served as a baseline in

prior works (Kalamkar et al., 2022; Santosh et al.,
2023). Initially, each sentence xi is encoded in-
dependently using a BERT model (Kenton and
Toutanova, 2019) to derive token-level represen-
tations zi = {zi1, zi2, . . . , zin}. These representa-
tions are passed through a Bi-LSTM layer (Hochre-
iter and Schmidhuber, 1997), followed by an atten-
tion pooling layer (Yang et al., 2016), to yield sen-
tence representations s = {s1, s2, . . . , sm}.

uit = tanh(Wwzit + bw) (1)

αit =
exp(uituw)∑
s exp(uisuw)

& si =

n∑
t=1

αituit (2)

Here, Ww, bw, and uw are trainable parame-
ters. The sentence representations s are passed
through Bi-LSTM layer to obtain contextualized
representations c = {c1, c2, . . . , cm} that en-
code contextual information from surrounding sen-
tences. Finally, the contextual representations c
are passed through a Conditional Random Field
layer that predicts the best sequence of labels.

4. RQ 1: Leveraging the
Neighbourhood at Inference

In this section, we leverage the knowledge from
semantically similar training instances directly
during inference without extra training overhead.
We interpolate the label distribution predicted by
the baseline model with the distribution derived
from the training instances similar to the test in-
stance. This overcomes the problem of memo-
rizing/learning rare patterns implicitly in the model
parameters, thus enhancing the model’s ability to
handle long-tail cases (classes with few instances
or rare patterns in frequent classes) especially in
limited data settings. We explore three different
methods to obtain the distribution from similar train-
ing instances.

4.1. Methods

4.1.1. Interpolation with kNN

In this method, we construct a datastore of
training instances and then retrieve the nearest
neighbours to the test instance for computing the
interpolated label distribution during the inference.

Datastore Construction After training, we obtain
contextualized representation ci of every sentence
in each document of the training set using the
trained model. We construct the datastore by
a single forward pass over each training docu-
ment. The datastore {K,V } is the set of all contex-
tualized representation-rhetorical label pairs con-
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structed from all the training examples D as:

{K,V } = {(ci, li)|∀xi ∈ x, ∀li ∈ l, (x, l) ∈ D} (3)

Interpolation During inference time, we query the
datastore using the contextualized representation
of every sentence in the test document, to find
the k-nearest neighbours N according to the eu-
clidean distance. Then, we derive the distribu-
tion of labels pkNN using labels of the retrieved
neighbours based on softmax of their negative
distances, while aggregating probability mass for
each label across all its occurrences in the re-
trieved neighbours (labels that do not appear in the
retrieved N have zero probability). Intuitively, the
closer a neighbor is to the test instance, the larger
its weight is.

pkNN (li|x, xi) ∝
∑

(k,v)∈N

1li=v exp(−d(ci, k)

τ
) (4)

τ denotes the temperature hyperparameter and
d(.) indicates euclidean distance. Finally, we inter-
polate the pbaseline(li|x, xi) with pkNN (li|x, xi) as:

pfinal(li|x, xi) = λpbaseline(li|x, xi)+

(1− λ)pkNN (li|x, xi)
(5)

where λ makes a balance between derived pkNN

and pbaseline obtained from the trained model.

4.1.2. Interpolation with Single Prototype

Instead of storing all the training instances in the
datastore, we seek to store one prototype for each
label, which captures the essential semantics of
various sentences for each rhetorical role, signif-
icantly reducing the datastore’s memory footprint.
To create a prototype for each label, we calculate
the average of the contextualized embeddings of
sentences that share the same rhetorical role. Intu-
itively these prototypes can be assumed to be the
center of clusters for different labels, surrounded
by sentences expressing the same label in the em-
bedding space. The interpolation process closely
resembles the kNN approach (Eq. 5), with the key
difference being that interpolation directly involves
the prototypes, rather than a prior retrieval step.

4.1.3. Interpolation with Multiple Prototypes

Instead of using a single prototype for each rhetori-
cal role, we suggest the use of multiple prototypes
for each label. This choice is driven by the fact
that instances with the same rhetorical role can ex-
hibit distinct variations in expression, resulting in
diverse contextual embeddings scattered across
the embedding space. Averaging these embed-
dings into a single prototype might diminish speci-
ficity. Utilizing multiple prototypes allows us to

effectively capture the intricate viewpoints within
each label. To accomplish this, we cluster the in-
stances belonging to each rhetorical role using k-
means, yielding multiple prototypes for each label
from the k centroids. The interpolation step re-
mains similar (Eq. 5), involving all these multiple
prototypes without any retrieval step.

4.2. Experiments

4.2.1. Implementation Details

We follow the hyperparameters for baseline as de-
scribed in Kalamkar et al. 2022. We use the BERT
base model to obtain the token encodings. We em-
ploy a dropout of 0.5, maximum sequence length
of 128, LSTM dimension of 768, attention con-
text dimension of 200. We sweep over learning
rates {1e-5, 3e-5, 5e-5. 1e-4, 3e-4} for 40 epochs
with Adam optimizer (Kingma and Ba, 2014) to de-
rive the best model based on validation set perfor-
mance. For all our inference variants, we carry a
grid search over the interpolation factor (λ) in in-
crements of 0.1 in the range of [0,1] to choose the
best model based on Macro-F1 on validation set.
For KNN and multiple prototypes, we vary k over
powers of 2 from 8 till 256.

4.2.2. Results

In Table 1, we present the macro-F1 and micro-F1
scores for both the baseline and the interpolation
variants. We observe a significant improvement
when using kNN interpolation across all datasets,
particularly in the more challenging macro-F1
metric, which accounts for label imbalances. On
the other hand, single prototype interpolation
mitigates memory footprint issue of kNN by
storing one representation per rhetorical role but
leads to performance degradation compared to
kNN. This decline results from oversimplification,
as a single prototype may struggle to capture
the diverse aspects within each rhetorical role,
particularly when instances of the same label
are dispersed across the embedding space.
This is evident in the Paheli dataset, where
no improvement over the baseline is observed.
Interpolation with multiple prototypes balances
memory efficiency and label variation capture.
While it slightly underperforms kNN interpolation
in Paheli and M-CL datasets, it outperforms kNN
in Build and M-IT. This can be attributed to a
smoothing effect that reduces noise or human
label variations in the kNN-based approach, partic-
ularly evident in datasets with low inter-annotator
agreements (Build and M-IT). These results affirm
our hypothesis that straightforward interpolation
using training set examples during inference can
boost the performance of rhetorical role classifiers.
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Build Paheli M-CL M-IT
mac.F1 mic.F1 mac.F1 mic.F1 mac.F1 mic.F1 mac.F1 mic.F1

Baseline 60.20 79.13 62.43 66.02 59.51 67.04 70.76 70.50
+ KNN 62.92 81.04 66.53 70.82 63.14 73.02 72.16 71.62
+ Single Proto 61.23 80.12 62.43 66.02 61.42 71.64 71.97 71.08
+ Mutli Proto 63.23 81.96 65.36 70.02 62.73 72.78 72.82 72.46

Table 1: Performance of interpolation methods on four datasets. mac.F1: macro-F1, mic.F1: micro-F1

Figure 1: Sensitity to hyperparameters - kNN (M-
CL) λ = 0: interpolation only, λ = 1: baseline only

Sensitivity of interpolation In Figure 1, we
present the macro-F1 score for the M-CL dataset
using kNN interpolation, while varying the interpo-
lation coefficient λ and the number of neighbors ’k’.
Here, λ values of 0 and 1 correspond to predictions
solely from interpolation and the baseline model,
respectively. We observe that performance ini-
tially improves as ’k’ increases, signifying that in-
corporating more neighbors boosts confidence by
including closely similar examples. However, per-
formance starts to decline with higher ’k’, which
can be attributed to a large number of neighbours
introducing noise with low inter-annotator agree-
ment, suggesting a need for a addressing this task
a multi-label classification. On the other hand, re-
ducing λ consistently enhances performance, par-
ticularly for lower k, showcasing the model’s capac-
ity to rely solely on semantically similar instances
for label prediction. With higher k, we notice a de-
cline in performance at lower λ values beyond a
certain optimal point, which is related to the label
variation problem exacerbated by a larger number
of neighbours. Similar trends are observed with
other interpolations.

5. RQ 2: Leveraging the
Neighbourhood at Training

We leverage the knowledge from neighbour in-
stances directly at the training process to improve
the performance. We explore three methods:
contrastive learning, single prototypical learning,
and multi prototypical learning. These techniques

draw inspiration from the same principles as their
inference-time counterparts but serve as auxiliary
loss constraints during training. Their primary aim
is to improve the discriminative capability of em-
beddings by highlighting differences between in-
stances with distinct rhetorical roles and similari-
ties among instances sharing the same label.

While the task-specific classification loss fo-
cuses on mapping contextualized representations
to label outputs with supervision on individual in-
stances, the methods in this section directly oper-
ate on embeddings in latent space. They exploit
the interplay among instances to establish effec-
tive discriminative decision boundaries, serving as
a form of regularization.

5.1. Methods

5.1.1. Contrastive Learning

Contrastive learning aims to bring an anchor
point closer to related samples while pushing
it away from unrelated samples in the embed-
ding space. In a supervised setting, samples
with the same/different labels are considered re-
lated/unrelated with respect to an anchor (Khosla
et al., 2020). The loss is calculated as follows:

Lcont=− 1
N2

∑
i,j

exp(δ(ci, cj)d(ci, cj))∑
j′ exp(1− δ(ci, cj′))d(ci, cj′)

(6)

d(ci, cj) =
1

(1 + exp( ci
|ci| ·

cj
|cj | ))

(7)

where δ(ci, cj) denotes 1 if ci and cj have same
rhetorical label, else 0, N denotes batch size.

Lengthy legal documents limits the number of
documents that can be accommodated in a sin-
gle batch and this raises concerns about having
enough positive samples for the minority class in-
stances within a batch for effective contrasting.
To overcome this limitation, we utilize a mem-
ory bank (Wu et al., 2018), where we progres-
sively reuse encoded representations from previ-
ous batches to compute the contrastive loss. In
practice, we maintain a fixed-size representation
queue for each rhetorical role. As new represen-
tations corresponding to specific labels are gener-
ated, they are enqueued into the respective queue
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with their gradients detached. If the queue size
for a label exceeds the maximum limit, the oldest
element is dequeued. When computing the con-
trastive loss, we use the same equation 7. How-
ever, in addition to the current batch instances, we
employ all the representations stored in the mem-
ory bank for contrasting purposes, using them as
both positives and negatives, based on the anchor
point’s label.

To incorporate the concept of context from sur-
rounding sentences into contrastive learning, we
introduce a novel discourse-aware contrastive
loss. This is based on the idea that sentences
in close proximity within a document, sharing the
same label, should exhibit a stronger proximity in
the embedding space compared to sentences with
the same label but positioned farther apart in the
document. To implement this concept, we intro-
duce a penalty inversely proportional to the abso-
lute difference in their positions. In particular, we
impose a higher penalty on positive sentence pairs
that are closer in the document, encouraging them
to be closer in the embedding space than pairs
originating from greater distances within the doc-
ument. The discouse-aware loss is as follows:

Lcont = − 1

N2

∑
i,j

exp(β(i, j)δ(ci, cj)d(ci, cj))∑
j′ exp(1− β(i, j)δ(ci, cj′))d(ci, cj′)

(8)

β(i, j) ∝ 1

|j − i|
(9)

where β represents a penalty that considers posi-
tional information. When ci and cj come from dif-
ferent documents, such as cross-document posi-
tives/negatives from the memory bank or across
the batch, we apply the lowest possible penalty,
considering ci as the farthest sentence relative to
in-document positives. We incorporate this addi-
tional contrastive loss alongside the classification
loss during training.

5.1.2. Single Prototypical Learning

While contrastive learning guides instances to ad-
just their positions in the embedding space relative
to other instances , prototypical learning employs
specific prototypes for each label in the embedding
space which act as specific guiding points (Ding
et al., 2020). Specifically, we randomly initialize
one prototype for each label as z = {z1, z2, . . . , zk},
where k denotes the number of rhetorical roles.
These prototypes undergo fine-tuning during the
training and we apply distance-related constraints
from both the prototype’s and the sample’s per-
spectives to guide their relationships. (i) Prototype
centric view (pcv): aims to bring samples Sj be-
longing to label j closer to the corresponding pro-

totype zj , while simultaneously pushing away sam-
ples of other labels, denoted as S′

j , from this pro-
totype. (ii) Sample centric view (scv): In this view,
the representation cj with label j is drawn closer
to its designated prototype zj , while pushing away
from other prototypesZ ′

j = z−zj . These two views
are represented in loss as:

Lpcv
j = − 1

N
(
∑

cp∈Sj

log(d(zj , cp)) +
∑
ci∈S′

j

log(1−d(zj , ci))) (10)

Lscv
j = − 1

K
(log(d(zj , cj)) +

∑
zp∈Z′

j

log(1−d(zp, cj))) (11)

These both views shape the embedding space by
aligning prototypes with their corresponding sam-
ples, forming distinct clusters of different labels,
each centered around a specific prototype vector.

5.1.3. Multi Prototypical Learning

Instead of using a single prototype for each la-
bel, this approach employs multiple prototypes for
each label to capture the diverse variations within
the sentences of the same label. To implement
this, a set of M prototypes per label is randomly ini-
tialized and a diversity loss (Zhang et al., 2022) is
integrated to penalize prototypes of the same label
if they are too similar to each other. This ensures
that prototypes of the same label are distributed
across the embedding space, capturing the multi-
faceted nuances under each label. The Sample
Centric View is also modified to ensure that each
sample is in close proximity to at least one proto-
type among all the prototypes of the same class.

Ldiv
k =

∑
q ̸=r

zq,zr∈Zk

max(0, zq · zr − θ)
(12)

Lscv
j = − min

zq∈Zk

log(d(zq, cj)+

1

(k − 1)M

∑
zp∈Z′

k

log(1− d(zp, cj))
(13)

where zq, zr are prototypes of same label k. Sam-
ple cj belongs to label k. θ is the similarity thresh-
old. Zk and Z ′

k represent the set of prototypes cor-
responding to the label k and those of labels other
than k, respectively.

5.2. Experiments

5.2.1. Implementation Details

We use the same training setup as described in
Sec. 4.2.1. We conduct grid-search for size of
memory bank per label and number of prototypes
in multi-prototypical learning in powers of 2 from
[32,512] and [4,256] respectively using the valida-
tion set performance.
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Build Paheli M-CL M-IT
mac.F1 mic.F1 mac.F1 mic.F1 mac.F1 mic.F1 mac.F1 mic.F1

Baseline 60.20 79.13 62.43 66.02 59.51 67.04 70.76 70.50
+ Contrastive 64.55 83.54 68.06 71.91 62.24 72.42 73.41 73.53
+ Contrastive + MB 66.51 83.29 71.76 72.69 63.14 72.72 72.22 72.46
+ Disc. Contr. 66.37 83.81 71.99 73.85 66.94 73.02 72.23 74.01
+ Disc. Contr. + MB 66.48 83.67 71.19 73.28 64.72 72.36 72.85 73.05
+ Single Proto. 66.01 81.45 69.94 71.09 64.42 71.52 72.59 71.98
+ Multi Proto. 66.35 83.05 71.38 72.92 65.91 73.57 73.02 74.13
+ Disc. Contr.
+ Single Proto. 67.02 83.91 74.28 73.86 65.87 72.12 72.50 72.1

+ Disc. Contr.
+ Multi Proto. 67.21 83.65 75.52 76.34 68.66 74.59 73.14 72.22

Table 2: Results on four datasets for methods leveraging neighbourhood during training (RQ2). Contr.,
Disc., MB, Proto. indicates Contrastive, Discouse-aware, Memory Bank and Prototypical respectively.

(a) Contrastive (b) Disc.-aware Contr. (c) Single-Prototypical (d) Multi-prototypical

Figure 2: t-SNE visualizations of different models on M-CL dataset. Disc.: Discourse, Contr.: Contrastive.
head, torso and tail in Disc.-aware Contr. plot indicate the relative position of the sentence in a document.

5.2.2. Results

Table 2, shows that incorporating contrastive loss
improves performance across all datasets. Fur-
thermore, the discourse-aware contrastive loss,
which leverages relative position to organize em-
beddings, enhances performance, supporting our
hypothesis that sentences with the same label and
in close proximity in the document should be closer
in the embedding space. Augmenting the con-
trastive loss with a memory bank further enhances
performance, particularly in macro-F1, benefiting
sparse classes. However, the degree of improve-
ment is less or negative in the discourse-aware
variant. This can be due to the positional factor,
as additional sentences from other documents re-
trieved from the memory bank are placed at the
end of the document, leading to smaller penal-
ization factors and contributing only marginally to
the loss. Overall, the discourse-aware contrastive
model emerges as the most effective among the
contrastive variants.

The single prototypical variant performs compa-
rably to the best contrastive variant and outper-
forms the baseline. This demonstrates that spe-
cific guiding points through prototypes can effec-
tively aggregate knowledge from neighboring in-
stances. Moreover, multiple prototypes further im-

prove performance, highlighting the need to cap-
ture multifaceted nuances. These results suggest
that the addition of respective losses can eliminate
the need to design specific memory banks to ex-
pose the model to large batches for effective guid-
ance from neighbors in contrastive learning.

Finally, combining the discourse-aware con-
trastive variant with both single and multiple
prototype variants yields further improvement,
highlighting the complementarity between these
approaches. These results suggest that deriving
supervisory signals from interactions among
training instances can be an effective strategy
for addressing the class imbalance problem,
particularly in low-data settings.

Qualitative Analysis: To examine the impact of
our auxiliary loss functions on the learned repre-
sentations, we employ t-SNE (Hinton and Roweis,
2002) to project the high-dimensional latent space
hidden states obtained by the model in Fig. 2. In
the case of contrastive learning, we observe that
sentences with the same label form distinct clus-
ters. With the addition of discourse-aware con-
trastive loss, samples with the same label in a
specific document adhere to the positional con-
straint, aligning with our hypothesis that samples
sharing a label and closer in the discourse se-
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Train ↓ Test → Paheli M-CL M-IT
Random 19.10 7.87 9.12

Paheli Baseline 62.43 56.98 57.31
Disc. Contr. 71.99 56.54 57.40
Single Proto. 69.94 58.30 59.92
Multi Proto. 71.38 57.47 59.48
DC + Single Pr 74.28 62.27 60.33
DC + Multi Pr 75.52 60.89 60.61

M-CL Baseline 54.71 59.51 63.08
Disc. Contr. 54.04 66.94 62.98
Single Proto. 57.48 64.42 60.23
Multi Proto. 56.10 65.91 61.62
DC + Single Pr 59.95 65.87 63.92
DC + Multi Pr 57.89 68.66 62.37

M-IT Baseline 52.97 58.83 70.76
Disc. Contr. 51.89 57.16 72.23
Single Proto. 51.57 58.58 72.59
Multi Proto. 52.85 58.70 73.02
DC + Single Pr 51.03 57.23 72.50
DC + Multi Pr 51.77 56.99 73.14

Table 3: Macro-F1 scores of our methods across
three datasets. The column ‘train’ indicates the
source dataset on which the model is trained and
each of the dataset columns indicates the tar-
get test dataset. Scores in grey indicates the in-
domain performance (trained and tested on same
dataset). {DC, Disc. Contr.} : Discourse-aware
contrastive, {Pr., Proto.} : Prototypical

quence should be positioned closer in the em-
bedding space compared to those farther apart.
In single prototypical learning, prototypes occupy
the centers of corresponding sentences, forming
distinctive manifolds. Similarly, multi-prototypical
learning captures multifaceted aspects with pro-
totypes dispersed across the embedding space,
each prototype serving as the center for respective
samples. These visualizations affirm the effective-
ness of our learning methods.

6. RQ 3: Cross-Domain
Generalizability

To evaluate how well our proposed methods can
transfer across different domains, we train the
model on one dataset (source) and assess its per-
formance on other datasets (target) in a blind zero-
shot manner. We use the Paheli, M-CL, and M-IT
datasets, which span diverse domains but share
a same 7 rhetorical label space. The resulting
Macro-F1 scores are presented in Table 3.

Naturally, models trained and tested on the
same domain outperform those trained on differ-
ent domains (e.g., baseline model trained and
tested on Paheli achieves a Macro-F1 of 62.43,
whereas trained on M-CL and tested on Paheli
achieves 54.71). Interestingly, the baseline model
shows an ability to transfer knowledge from one do-

main to another, outperforming random1 guessing
across all datasets. While discourse-aware con-
trastive model improves in-domain performance,
it marginally reduces cross-domain performance
across all datasets compared to the baseline (e.g.,
Disc. Contr. trained on M-CL and tested on Pa-
heli achieves a Macro-F1 of 54.04, while the base-
line with the same setup achieves 54.71). This
can be attributed to the model capturing domain-
specific features while minimizing distances be-
tween similar instances in contrastive learning.
In contrast, single and multi-prototypical models
enhance cross-domain transfer compared to the
baseline, except when trained on M-IT. This in-
dicates prototypical learning acts as a more ro-
bust guiding point, preventing overfitting to noisy
neighbors as in contrastive models. Between
the two, single prototype tend to perform bet-
ter, due to its single representation being agnos-
tic to domain-specific variations and encapsulat-
ing core characteristics, making it more adept
in cross-domain scenarios. Furthermore, cou-
pling discourse-aware contrastive with prototypi-
cal models boosts cross-domain performance, ex-
cept when trained on M-IT. This behaviour of
M-IT may be attributed to marginal in-domain
improvements, leading to overfitting on domain-
specific features limiting cross-domain generaliza-
tion. This prompts questions about selection of
optimal source dataset for improved performance
on target datasets, warranting further investigation.
For instance, to test on Paheli with baseline, train-
ing on M-CL yields a Macro-F1 of 54.71, while
on M-IT yields 52.97. Additionally, exploring joint
training with multiple datasets could shed light on
their impact on both in-domain source and unseen
target datasets.

7. Conclusion

In this paper, we have demonstrated the potential
for enhancing the performance of rhetorical role
classifiers by leveraging knowledge from neigh-
bours, semantically similar instances. Interpola-
tion with kNN and multiple prototypes at the infer-
ence time have shown promising improvements,
especially in addressing the challenging issue of
label imbalance, without requiring re-training. Ad-
ditionally, our approach of incorporating neigh-
bourhood constraints during training with our pro-
posed discourse-aware contrastive learning and
prototypical learning has demonstrated improve-
ments. Combining both methods has boosted
it further, indicating their complementary nature.
Notably, the prototypical methods have proven to

1Random choices are based on the training set’s la-
bel distribution (uniform distribution lead to further lower
scores). These are averaged over 10 runs.
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be robust, showcasing performance gains even in
cross-domain scenarios, generalizing beyond the
domains they were trained on.

8. Limitations

One constraint in the current task formulation is
that it restricts assigning a single label to each sen-
tence, which may not fully account for the com-
plexity of lengthy sentences that can encompass
multiple rhetorical roles. To address this limita-
tion, an alternative approach could involve refor-
mulating the task as multi-label classification, en-
abling each sentence to be associated with more
than one gold-standard rhetorical role. Another av-
enue for exploration is to shift from sentence-level
segmentation towards a finer-grained approach at
the phrase or sub-sentence level, necessitating
the assignment of rhetorical roles to each phrase
or sub-sentence while specifying the dependency
relations between these segments (Tokala et al.,
2023).

It’s important to acknowledge that while our
cross-domain experiments have provided valuable
insights into model generalizability, these evalua-
tions have primarily focused on datasets originat-
ing from Indian courts, covering various domains
within this single jurisdiction. The observed im-
proved performance across these datasets could
potentially be attributed to shared country-specific
vocabulary and legal conventions. To ensure the
robustness and generalizability in a broader con-
text, it is imperative to expand the assessment
to encompass diverse legal contexts across differ-
ent countries and regions, where legal documents
from may exhibit significant linguistic and structural
variations.

9. Ethics Statement

The scope of this work is to provide new methods
along with corresponding experiments to drive re-
search forward in rhetorical role labeling, which is
a pivotal task constituting the inaugural step in the
legal document processing pipeline. Our experi-
ments have been carried out on four publicly avail-
able datasets from different Indian courts. Though
these decisions are not anonymized and contain
the real names of the involved parties, we do not
foresee any harm incurred by our experiments. We
believe that our research contributes positively to
the broader goals of advancing legal NLP and the
development of AI-driven tools for legal profession-
als. By enhancing the automation of rhetorical role
labeling, we can streamline legal document analy-
sis and significantly benefit the legal field.
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