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Abstract
Reasoning in mathematical domains remains a significant challenge for relatively small language models (LMs). Many
current methods focus on specializing LMs in mathematical reasoning and rely heavily on distilling knowledge from
powerful yet inefficient large LMs (LLMs). In this work, we explore a new direction that avoids over-reliance on LLM
teachers, introducing a multi-view fine-tuning method that efficiently exploits the generalization among mathematical
problem datasets with diverse annotation styles. Our approach uniquely considers the various annotation formats as
different “views” that may help each other and leverage them in training the model. By postpending distinct instructions
to input questions, models can learn to generate solutions in diverse formats in a flexible manner. Experimental results
show that our strategy enables relatively small LMs to outperform prior approaches that heavily rely on knowledge
distillation, as well as carefully established baselines. Additionally, the proposed method grants the models promising
generalization ability across various views and datasets, and the capability to learn from inaccurate or incomplete
noisy data. We hope our multi-view training paradigm could inspire future studies in other machine reasoning domains.
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1. Introduction
Mathematical reasoning, a central aspect of human
cognition, has been the subject of inquiry across
various disciplines such as philosophy, mathemat-
ics, and cognitive science. This capacity, character-
ized by the analysis of symbolic patterns and logi-
cal relationships, and the derivation of conclusions
from evidence, is crucial for numerous practical ap-
plications, such as intelligent education systems
(Tack and Piech, 2022). The recent development
of large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023a)
introduces both a novel challenge and an excit-
ing opportunity for deep learning models to tackle
mathematical reasoning tasks.
A significant advancement in machine mathemat-
ical reasoning is the discovery of a step-by-step
reasoning process such as scratchpads (Nye et al.,
2021) and chain-of-thought (CoT) prompting (Wei
et al., 2022b; Kojima et al., 2022) to enhance rea-
soning in LLMs, leading to marked improvements
in the accuracy of automated math problem solving.
However, this strong ability seems to emerge only
at an immense scale, typically exceeding 100 billion
parameters (Wei et al., 2022a) in LLMs. Similar ob-
servations are presented in (Touvron et al., 2023a),
revealing that LMs with fewer than 10 billion param-

* This work was done when Zhenwen and Qingkai
were interns at the Tencent AI Lab, Bellevue. The
code and data are available at https://github.com/
Zhenwen-NLP/MinT-COLING2024.

eters still struggle to achieve accuracy over 20%
on the GSM8K dataset (Cobbe et al., 2021), which
is essentially comprised of elementary-level math
word problems.
To obtain mathematical reasoning models that are
both efficient and effective, a widely explored direc-
tion is to specialize general-purpose LMs in mathe-
matics (Fu et al., 2023) by supervised fine-tuning
and distilling the knowledge and abilities from larger
teacher models into smaller student models (Ho
et al., 2022; Shridhar et al., 2022; Magister et al.,
2022; Hsieh et al., 2023; Liang et al., 2023b). How-
ever, this kind of approach faces certain limitations.
Firstly, it heavily relies on CoT explanations of ex-
isting data or extra CoT-style data generated by the
larger models to train the smaller student model,
and the most common choices for teachers are the
GPT series and PaLM-540B (Chowdhery et al.,
2022), which are resource-intensive and costly.
Moreover, LLMs might still make errors or fail to
sufficiently explain reasoning steps, which could
adversely influence the quality of the generated
data and subsequently, the performance of the stu-
dent models.
To mitigate the above limitations, instead of relying
solely on inefficient LLMs to generate CoT annota-
tions or additional training samples, we focus on
an under-explored question:

Can we effectively utilize publicly accessible
datasets to develop small LMs specialized in

mathematical problem solving?

https://github.com/Zhenwen-NLP/MinT-COLING2024
https://github.com/Zhenwen-NLP/MinT-COLING2024
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Using existing annotated datasets can reduce
manual effort and computational costs compared
with relying on LLMs to generate additional an-
notated data. However, there are also several
challenges posed by this direction. First, exist-
ing datasets vary significantly in their annotation
formats. For instance, the GSM8K (Cobbe et al.,
2021) dataset offers solutions in a narrative format
detailing step-by-step rationales, while the MathQA
(Amini et al., 2019) dataset uses flattened programs
for annotations, and Ape210K (Zhao et al., 2020),
the largest math word problem dataset, adopts
equation-based solutions. Additionally, as we col-
lect more data from various data sources such as
websites, the potential of encountering irrelevant
or even inaccurate data cannot be disregarded.
These differences in annotation styles and qual-
ity can hinder the effective use of these datasets
to train math reasoning models. Empirically, we
observe that merely merging multiple datasets with
different annotation formats cannot always improve
model performance — in fact, it often has a nega-
tive effect.
To address the above challenges, we propose a
Multi-View Fine-Tuning (MinT) paradigm. In this
context, the disparate annotation methods em-
ployed across different datasets are conceptual-
ized as distinct “views” of mathematical problem
solutions and thus we enable the generalization
among different annotations during training to im-
prove math understanding and reasoning. To fully
leverage existing data and demonstrate generaliza-
tion, we not only utilize the original views but also
expand the solution views in existing math word
problem datasets by view transformation. Then we
append view-specific instructions to the input ques-
tions to guide the models to generate solutions
in the desired view. Our underlying assumption
is that training the model to comprehend various
solution views equates to learning different meth-
ods of mathematical reasoning, which inherently
helps strengthen its reasoning and generalization
capabilities. Extensive experimental results sup-
port the efficacy of MinT, indicating that it fosters a
variety of generalizations that contribute to enhanc-
ing overall performance across all views. Notably,
our paradigm can also be used to incorporate rel-
evant but noisy datasets, by regarding them as a
new view, to further improve the performance of
existing views.
In fact, some instruction-tuning methods (Chung
et al., 2022; Sanh et al., 2022; Liu et al., 2023) for
LLMs share similarities with our work in augmenting
instructions and input-output pairs. However, our
approach, MinT, primarily seeks to investigate the
impact of various alternative reasoning paths for a
single input. In contrast, these methods concen-
trate on generating and employing a broader range

of high-quality instructions and question-answer
pairs. To put it differently, while prior research em-
phasizes data generation, our proposed MinT fo-
cuses on the efficient utilization of existing data.
Our contributions can be summarized as follows:
• We propose a multi-view training approach to fine-

tune a relatively small language model in the do-
main of mathematical reasoning. As a result, our
approach boosts the performance on four mathe-
matical reasoning benchmarks. Importantly, this
is achieved without the use of LLMs as additional
data generators or teacher models.

• Our multi-view training method utilizes a large
amount of data from both the research community
and the broader internet, to enhance the math-
ematical reasoning capabilities of LMs, which
confirms great flexibility and generalizability by
effectively handling and learning from data in di-
verse formats and from various sources.

• Our extensive experiments demonstrate that our
approach performs effectively not only on an ex-
ternally held-out dataset but also across different
LM architectures. This insight demonstrates this
approach can be applied more widely, and its
potential to inspire future studies aimed at more
diverse tasks and backbone models.

2. Related Work
2.1. Multi-View Learning
In traditional machine learning, multi-view learn-
ing often refers to semi-supervised co-training al-
gorithms (Nigam and Ghani, 2000; Sun and Jin,
2011). These algorithms exploit multiple views of
data to iteratively learn separate classifiers, each of
which provides predicted labels for the unlabeled
data of the others, i.e., semi-supervised setting.
Another thread of multi-view learning lies in clus-
tering methods. These methods aim to partition
the data across multiple views, which provide com-
plementary information to each other, to obtain a
more refined representation of the data (Bickel and
Scheffer, 2004; Li et al., 2015; Cao et al., 2015).
More recently, the concept of multi-view learning
has been extended to deep learning (Song et al.,
2020). For instance, Wang et al. (2022) employ
multiple transformers to learn a comprehensive em-
bedding for speaker recognition. Similarly, Zhong
et al. (2023) utilize views based on context, syntax,
and knowledge to analyze the sentiment of sen-
tences. Moreover, Allen-Zhu and Li (2023) show
that learning multi-view data (e.g., tail, legs, heads
of a horse) can be associated with ensemble learn-
ing and knowledge distillation techniques to im-
prove the accuracy of image classification tasks.
While traditional multi-view learning approaches
aim to improve data representations, our work takes
a different path by focusing on mathematical prob-
lem solving, in contrast to deterministic tasks such
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as image classification, sentiment analysis, and
speaker recognition. This free-form generation task
can be characterized by its diverse solution views
shown in Table 1. This situation is further compli-
cated by the existence of multiple acceptable solu-
tions for a given problem, as discussed in (Hong
et al., 2021). Given these conditions, our goal is
not to prioritize any single view. Instead, we focus
on improving the accuracy of solutions across all
views. In this context, the term “generalization” in-
dicates the collaboration and mutual benefit across
all the views, differing from the traditional concept
of generalizing to a specific representation or im-
proving the performance of deterministic tasks. We
hope this work can broaden the application and
impact of multi-view learning techniques in natural
language processing.

2.2. Math Word Problem Solving
Solving math word problems is a representative
task for evaluating the mathematical reasoning ca-
pabilities of NLP models (Amini et al., 2019; Pa-
tel et al., 2021; Cobbe et al., 2021). Earlier ap-
proaches rely on statistical and rule-based pars-
ing (Hosseini et al., 2014; Koncel-Kedziorski et al.,
2015), followed by a transition to Seq2Seq-based
neural networks (Xie and Sun, 2019; Zhang et al.,
2020; Jie et al., 2022). Recently, large language
models have demonstrated success in solving math
word problems, surpassing fine-tuned baselines
through prompting methods such as CoT (Wei et al.,
2022b; Kojima et al., 2022).
Another thread of research has also explored the
distillation of data from LLMs to smaller models
(Ho et al., 2022; Magister et al., 2022; Shridhar
et al., 2022; Hsieh et al., 2023; Liang et al., 2023b;
Yuan et al., 2023; Luo et al., 2023; Yue et al., 2023).
These papers primarily leverage stronger LLMs
for generating high-quality instructions and reason-
ing steps, segmenting problems, or creating cus-
tomized exercises to train smaller models.
Our research, however, investigates a different ap-
proach: using accessible datasets in an effective
and efficient way to train smaller LMs for mathe-
matical problem solving, which can be seamlessly
integrated with previous data-centric methods. In
other words, we offer a unique perspective, being
orthogonal to previous research efforts.

3. Our Approach
3.1. Our Views
Our method utilizes multi-view training where we
conceptualize different annotation styles across
datasets as distinct “views” of mathematical prob-
lem solutions. These views embody a rich collec-
tion of solution formats expressed in different lev-
els of symbolism, each with unique nuances and

strengths. We categorize the views as follows and
show examples for the first three views in Table 1.
Clean Chain-of-Thought Explanations
(CoTclean) The first view, clean chain-of-
thought explanations (CoTclean), is featured
in the GSM8K dataset. This annotation style
entails a thorough, step-by-step explanation of
the solution process. Each intermediary step is
clearly elaborated until the final solution is derived.
These explanations serve as a detailed guide,
illustrate the logical reasoning behind each step,
and facilitate the comprehension of the entire
solving process.
Equation Solutions (EQN) The second view,
equation solutions (EQN), presents each ques-
tion’s solution as an equation composed of various
operators and quantities. Although this view lacks
the detailed explanation as those in CoT solutions,
it offers a concise representation of the solution
and is widely used in datasets such as Ape210K,
MathQA, and CM17K. It provides the key informa-
tion to solving problems in a form of a mathematical
expression, making itself an efficient and effective
format to address certain types of problems such
as math word problems.
Solution Tree Pre-order Traversal (Tree) The
third view, solution tree pre-order traversal (Tree),
is an abstract representation of the solution. This
format, which is widely adopted by math word prob-
lem solvers (Zhang et al., 2020; Liang et al., 2022a;
Jie et al., 2022), employs the pre-order traversal of
the solution tree. Using Tree eschews the need
for parentheses, which in turn simplifies the solu-
tion grammar compared with EQN solutions. More
importantly, this form reflects a goal-driven solving
strategy aligned with human reasoning (Xie and
Sun, 2019) as well as fosters efficient solution pro-
cessing and inference.
Noisy Chain-of-Thought Explanations
(CoTnoisy) The fourth view, noisy chain-
of-thought explanations (CoTnoisy), is similar
to CoTclean, albeit with noise introduced. This
noise may come from incomplete explanations,
minor calculation errors, irrelevant domains,
or misinterpretation of the problem. This view
represents a general category of irrelevant or
inaccurate solutions, thereby cannot be used
for evaluation and we do not provide examples
in Table 1. While challenging, this view reflects
the uncertainty and ambiguity in real-world data,
providing an opportunity to make models more
robust and flexible to different data sources.
In summary, the CoTcleanview provides a detailed
explanation, making it the richest in information. It
outlines each solution step, mimicking the human
method of detailed problem-solving. In contrast,
the EQN view is more concise. It captures only
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Beth bakes 4, 
2 dozen 

batches of 
cookies in a 

week ……

Think step by step:

Pre-order traversal:

Solution Equation:

ModelInput Problem Multi-View Instructions

Bech bakes 4*2 = <<$4*2=8>>8 
dozen cookies ……

/ * 12 * 4 2 16

12*(4*2)/16

Multi-View Solutions

LLaMA-
7B

View 
Transformation

Figure 1: We use MinT to fine-tune a LLaMA-7B model that specializes in math problem solving. First, the
original annotation is transformed into multiple different views. Then, the model is trained by instructions
to generate different solution forms for one problem.

Question: Beth bakes 4, 2 dozen batches of cook-
ies in a week. If these cookies are shared amongst
16 people equally, how many cookies does each
person consume?
View Solution
CoTclean Beth bakes 4, 2 dozen batches of cook-

ies for a total of 4*2 = ≪4*2=8≫8 dozen
cookies. There are 12 cookies in a
dozen and she makes 8 dozen cookies
for a total of 12*8 = ≪12*8=96≫96 cook-
ies. She splits the 96 cookies equally
amongst 16 people so they each eat
96/16 = ≪96/16=6≫ 6 cookies.

EQN x = 12*(4*2)/16
Tree / * 12 * 4 2 16

Table 1: Examples of three views of mathematical
solutions to a given question.

the core symbols necessary for the solution, ideal
for quick interpretation and computation. Then,
the Tree view further simplifies equation repre-
sentation using a hierarchical approach, which is
more concise and coherent. Our multi-view learn-
ing framework leverages these different solution
forms. By training the model on multiple views, it
gains a broader and deeper understanding. This
is similar to how teachers encourage students to
consider multiple solution paths to understand prob-
lems better. As a result, our approach can enhance
the model’s problem-solving capabilities.

3.2. View Transformation
As shown in Table 1, the CoTclean view contains
both equations and explanations. Therefore, we
can simply extract all the equations from the
CoTclean view using rule-based detection, and then
we combine and transform them into the EQN view.
Apart from that, the third view, Tree, can be derived
from the EQN view, through well-defined algorithms
such as (Wang et al., 2018). This kind of view trans-
formation allows us to augment the solution forms
for the model to learn.

3.3. Multi-View Fine-Tuning
We propose an approach, referred to as Multi-View
Fine-Tuning (MinT ), to guide the model in gen-
erating different views of solutions by postpending
specific instructions to the input questions. This
results in multiple unique concatenated instructions
for a given problem, and each instruction guides
the model to produce a corresponding view of the
answer, as shown in Figure 1.
Formally, each question Q is paired with an instruc-
tion string pi drawn from the set P, which includes
all possible instructions. When Q is concatenated
with pi, it results in a unique string for each ques-
tion. This provides the necessary guidance for the
model to generate a corresponding answer ai from
the answer set A. As such, for each question, we
formulate multiple sequences si = Q + pi + ai.
Consequently, during the training phase, the model
processes a large number of these sequences si,
enhancing its understanding and generalization
across multiple views.
To optimize the model, the next-word-prediction
loss L is calculated for each sequence:

L(si) = −
len(si)−1∑

j=1

logP (si,j+1|si,1:j ; Θ), (1)

where P denotes the model’s conditional probabil-
ity distribution over the next token, facilitated by the
Softmax function of the model’s logits, si,j repre-
sents the jth token of sequence si, and Θ embodies
the model parameters. However, to enhance the
model’s focus on generating accurate answers, we
exclusively backpropagate the loss calculated on
the answer part, denoted as Lai :

Lai
(si) = −

len(si)−1∑
j=len(Q+pi)+1

logP (si,j+1|si,1:j ; Θ).

(2)
It ensures that the model focuses on learning to pro-
duce precise answers. During the evaluation, we
adopt the same instruction and assess the model’s
performance on each individual view.
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To sum up, our approach integrates multiple
datasets, each following its own annotation for-
mat or “view”. Our strategy of view transformation
serves as an efficient data-utilization method to en-
hance reasoning generalization, which is achieved
by converting data, originally annotated in one view,
into multiple diverse views, thus maximizing the uti-
lization of available data. Then, by learning from
different views, our model can comprehensively
understand mathematical problems, thus improv-
ing its reasoning and generalization capabilities.
Another advantage of our method is its scalabil-
ity. MinT can easily accommodate additional views
or data, thus continually enhancing the model’s
learning and performance as new data becomes
available. Our MinT also has the potential to be in-
tegrated with existing knowledge distillation-based
methods (Ho et al., 2022; Shridhar et al., 2022; Mag-
ister et al., 2022; Hsieh et al., 2023; Liang et al.,
2023b) and instruction tuning methods (Luo et al.,
2023; Yue et al., 2023). In this scenario, the out-
put from larger “teacher” models can be consid-
ered as an additional view. Our model, serving as
the “student”, can then learn to imitate the reason-
ing processes and outcomes of the teacher model,
thus effectively expanding its own problem solving
capability. This ability can be confirmed by the per-
formance improvement given by the inclusion of
ASDiv-CoT dataset in Section 4.3.

4. Experiments and Results
Our experiments mainly aim at answering the fol-
lowing research questions:
RQ1: How does MinT affect the performance of
a mathematical reasoning model trained across
different datasets with different views impact the
model’s performance in comparison to straightfor-
ward dataset merging?
RQ2: What is the effect of introducing additional
noisy training data on the model’s generalization
capabilities?
RQ3: How does MinT affect the performance of
a mathematical reasoning model trained on a sin-
gle dataset when in comparison to individual fine-
tuning on a single view?
In addition to three main RQs, we evaluate perfor-
mance on held-out datasets and experiment with
different LM backbones to verify generalizability
and adaptability in Section 4.4 and 4.7.

4.1. Datasets and Implementation
GSM8K (CoTclean, EQN, Tree) The GSM8K
dataset (Cobbe et al., 2021) is a curated set of 8.5K
high-quality elementary-level math word problems
in English, authored by human problem writers. It
is split into approximately 7.5K problems for train-
ing and 1K for testing purposes. The problems are
annotated with their comprehensive step-by-step

solutions, providing the Clean Chain-of-Thought
Explanations (CoTclean) view.
MathQA (EQN, Tree) MathQA (Amini et al.,
2019) contains English mathematical problems
from GRE examinations. Nevertheless, some
of the problems in this dataset have quality con-
cerns. Several efforts (Tan et al., 2022; Li et al.,
2022; Liang et al., 2022a) have been conducted to
cleanse and filter the MathQA dataset. We adopt
the version referenced in (Liang et al., 2022a),
wherein all solutions are re-annotated by an equa-
tion composed of the four arithmetic operators and
numbers, reflecting the Equation Solutions (EQN)
view and we also transform that to the Tree view.
Ape210K (EQN, Tree) The Ape210K dataset
(Zhao et al., 2020) is a large-scale, template-rich
collection of math word problems (MWPs) in Chi-
nese, containing 210,488 problems and 56,532
solution templates. The view of the solutions in
Ape210K mirrors that in MathQA. Our experiment
incorporates its 200K training problems and 50K
testing problems.
CM17K (EQN) The CM17K dataset (Qin et al.,
2021) comprises four types of Chinese MWPs
(arithmetic, one-unknown linear, one-unknown non-
linear, equation set), which is different from MathQA
and Ape210K. Therefore, we only have the EQN
view for the solutions in this dataset.
ASDiv-CoT (CoTnoisy) The ASDiv dataset (Miao
et al., 2020) consists of 2,305 English MWPs that
are diverse in language patterns and problem types.
We employ the few-shot CoT predictions of GPT-
3 provided by (Wei et al., 2022b) on this dataset
as one of the CoTnoisyviews for training. With an
accuracy of 71.3%, approximately 30% of the pre-
dictions are spurious. The inclusion of this dataset
shows the adaptability and broad applicability of
our method to inaccurate LLM-generated data.
ExamQA (CoTnoisy) The ExamQA dataset (Yu
et al., 2021) is a comprehensive Chinese dataset of
real-world exams, containing 638k multiple-choice
instances across various subjects (e.g., sociology,
education, and psychology). We sample a sub-
set with 20k problems that contain numbers and
equations in their answers by hand-crafted rules.
Despite each problem in this subset being anno-
tated with its ground truth and step-by-step solu-
tions, we inevitably introduce many problems that
are less relevant to the math subject. This dataset
also serves as one of the CoTnoisy views, showing
the generalizability of our approach.
We employ LLaMA-7B (Touvron et al., 2023a) as
our backbone and perform fine-tuning on the full
model. We use Pytorch with DeepSpeed Library
to implement the code and use 8 NVIDIA V100
GPUs with 32GB of memory to train our model.
We have incorporated a few techniques to ease the
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Evaluation Set
GSM8K (en) MathQA (en) CM17K (zh) Ape210K (zh)

Single Dataset Baselines
Prior Best 38.2a 76.6b 54.1c 70.2d

Trained on Single Dataset 35.4 79.9 70.1 74.0
Simple Dataset Mixture

Trained on GSM8K+MathQA 36.7 79.7 - -
Trained on Ape210K+CM17K - - 76.0 74.9
Trained on All Four Datasets 35.3 81.0 68.9 74.1

Multi-View Fine-Tuning (MinT )
CoTclean

† EQN Tree EQN† Tree EQN† EQN† Tree
Trained on GSM8K+MathQA 36.8 35.8 38.1 79.7 80.5 - - -
Trained on Ape210K+CM17K - - - - - 77.1 75.9 74.3
Trained on All Four Datasets 38.8 39.2 40.8 81.0 81.3 77.6 76.0 74.3

Table 2: Experimental results showing the performance of LLaMA-7B with different fine-tuning methods
across four datasets. The simple dataset mixture means the training data is mixed only with their
original views (marked with †). For CM17K, we only adopt the EQN view due to the complexity of view
transformation for this dataset. For our method MinT, we train our model and report the performance on
all available views. The first column shows the training datasets that are used. Prior best results are: a:
(Magister et al., 2022), b: (Liang et al., 2022a), c: (Qin et al., 2021), d: (Zhao et al., 2020). Some prior
best models are based on RNNs, hence not as good as single dataset fine-tuning on LLaMA-7B. Missing
cells in this table are due to language differences.

GSM8K MathQA CM17K Ape210K
Simple Dataset Mixture

Trained on Four Datasets 35.3 81.0 68.9 74.1
Trained on Four Datasets + Two Noisy Datasets 31.9 79.7 71.3 73.2

Multi-View Fine-Tuning (MinT )
CoTclean

† EQN Tree EQN† Tree EQN† EQN† Tree
Trained on Four Datasets 38.8 39.2 40.8 81.0 81.3 77.6 76.0 74.3

Trained on Four Datasets + ASDiv-CoT 39.0 39.7 42.2 81.4 81.8 78.2 76.4 75.2
Trained on Four Datasets + ExamQA 38.6 38.8 41.0 81.0 82.2 78.1 76.6 75.4

Trained on Four Datasets + Two Noisy Datasets 39.2 39.7 42.4 82.0 82.3 78.8 77.0 76.1

Table 3: Experimental results showing the performance of LLaMA-7B with different fine-tuning methods.
Four datasets indicate the combination of four clean datasets - GSM8K, MathQA, CM17K, and Ape210K,
while two noisy datasets are ASDiv-CoT and ExamQA.

computational burden. First, we apply parameter
offloading and optimizer offloading and utilize gra-
dient checkpointing to reduce the memory footprint.
Additionally, we employ gradient accumulation, ef-
fectively enlarging the batch size without demand-
ing additional GPU memory. Lastly, the parameters’
precision is set to float-16 (FP16). The fine-tuning
process lasts for three epochs with a batch size
of 64 and a learning rate of 0.00002. Though we
find that further fine-tuning could bring slight per-
formance improvements, we limit the number of
epochs to four due to efficiency concerns. As a
result, the total training time, even while using all
the 6 training sets, does not exceed 48 hours.

4.2. Generalization Across Different
Datasets with Different Views (RQ1)

For this investigation, we utilize four different
datasets: GSM8K, MathQA, CM17K, and Ape210K.

Our baseline for comparison involves prior best re-
sults, the single dataset fine-tuning on LLaMA-7B,
and simply merging all four datasets for fine-tuning
on LLaMA-7B, as shown in Table 2. The results
show that straightforward merging cannot bring
any improvements. Contrastively, it even has a
negative effect. Alternatively, with our multi-view
learning approach applied to the four datasets, the
model obtains a general improvement across all
views when additional training data is added. An-
other notable observation is that the performance
of the CoTclean view on the GSM8K dataset gets im-
proved by multi-view fine-tuning with the other three
datasets, even though the additional datasets actu-
ally do not provide any supplementary data in the
CoTclean view. This outcome shows a promising
generalization ability, illustrating the effectiveness
of MinT in better leveraging diverse datasets. We
can also notice that the performance on Tree view
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is generally the best, where the potential reason is
that this view has the simplest grammar, hence it
is the easiest view for the model to learn.
Furthermore, we observed that the accuracy im-
provement between the single dataset baseline and
our method is more obvious on the GSM8K and
CM17K in comparison to the MathQA and Ape210K.
A possible explanation could be that MathQA and
Ape210K already contain a substantial number of
training problems, thereby enabling the learning
of problem patterns and solving skills directly from
their training sets. Consequently, the contribution
of external datasets may not be significant in this
case. However, for the more challenging GSM8K
and CM17K datasets, our multi-view training could
improve the performance more effectively. Further-
more, it can be observed that the EQN view per-
forms optimally on the Ape210K dataset, which is
different from GSM8K. This could potentially be at-
tributed to the fact that the solutions in Ape210K
comprise fewer steps, resulting in relatively sim-
pler equations compared to those in GSM8K and
MathQA. Consequently, converting these equa-
tions into tree traversals may not substantially sim-
plify the solutions, thereby not improving the model
performance. The above two behavior patterns are
also shown in Table 3.

4.3. Generalization on CoTnoisy View
(RQ2)

In order to further understand the effects of incor-
porating external noisy training data, we introduce
two additional datasets – ASDiv-CoT and ExamQA.
The former provides CoT explanations to problems
within the ASDiv dataset, though about 30% of
these CoTs are incorrect. The latter, ExamQA, pro-
vides CoT to multi-subject exam problems, and
while the solutions provided are accurate, a large
number of them are less related to mathematical
reasoning. Table 3 presents our experimental re-
sults: when we directly add the two noisy datasets
for training, there is a slight decrease in accuracy.
However, with a specific postfix to differentiate them
from the other three views, the overall performance
is improved, which demonstrates the potential of us-
ing external noisy data to improve the performance
on specific downstream tasks. In addition, the re-
sults in Table 2 and 3 indicate that multilingual data
can also complement each other and help improve
the general reasoning ability.

4.4. Generalization Across Different
Views on One Dataset (RQ3)

Firstly, we investigate the effect of MinT on one spe-
cific dataset. The GSM8K dataset is selected for
this investigation, as it is annotated by the CoTclean

view wherein the equations are enclosed by <<
and >>, and thus CoTclean can be relatively easily

transformed into EQN and Tree views, offering a
suitable platform for our investigation. We first con-
sider the baselines that are fine-tuned on GSM8K
using each of the three views individually. Then,
we introduce a model fine-tuned with our proposed
approach and evaluate it on different views by post-
pending view-specific instructions to questions.

Prior Work that Use LLMs Accuracy
(Shridhar et al., 2022) (GPT-6B) 21.0%
(Fu et al., 2023) (FlanT5-11B) 27.1%

(Magister et al., 2022) (T5-11B) 38.2%
Multi-View Fine-Tuning (MinT )

Train View Test View Accuracy
CoTclean CoTclean 35.4%

EQN EQN 30.5%
Tree Tree 32.3%

CoTclean+EQN CoTclean 35.9%
CoTclean+EQN EQN 36.2%

CoTclean+EQN+Tree CoTclean 36.5%
CoTclean+EQN+Tree EQN 36.9%
CoTclean+EQN+Tree Tree 37.8%

Table 4: Results on different views of GSM8K.

Table 4 shows that augmenting the data with
additional views improves performance on all
views. Fine-tuning on the original CoTclean anno-
tations achieves 35.4% accuracy on the test set
(CoTclean view). Adding EQN and Tree views dur-
ing training boosts CoTclean accuracy to 36.5%,
a 1.1% absolute improvement. More substantial
gains are observed on the Tree view (from 32.3%
to 37.8%).
Also, we note that prior work utilizes high-quality
data generated by LLMs and different model ar-
chitectures. As such, we would like to clarify that
our work is orthogonal to them and thus, we are
not intending to make direct comparisons, though
including them for reference may be useful. In fact,
our MinT can seamlessly combine with those data-
centric methods, by simply assigning additional
views for the generated data from stronger models
as shown in Section 4.3.

4.5. Evaluation on Held-out Dataset
In order to further assess the multi-view problem
solving abilities of our method, we evaluated it on
the held-out dataset, MAWPS (Koncel-Kedziorski
et al., 2016), which contains 2,373 English MWPs
annotated with Equation Solutions (ES) view. It inte-
grates several datasets (Hosseini et al., 2014; Kush-
man et al., 2014; Koncel-Kedziorski et al., 2015;
Roy and Roth, 2015) and thus serves as a compre-
hensive benchmark. Three training data settings
are used: GSM8K only, four clean datasets, and
all six datasets, where respective models are all
trained with MinT. Our results in Figure 3 are similar
to the observations from our previous experiments:
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GSM8K MathQA CM17K Ape210K
Simple Dataset Mixture 35.3 81.0 68.9 74.1

a1. Original View with Instructions 35.5 80.2 76.6 74.7
a2. Only EQN View with Instructions 34.6 79.9 77.5 74.0
a3. Only Tree View with Instructions 39.6 81.0 - 75.2

CoTclean EQN Tree EQN Tree EQN EQN TreeMinT (Our method)
38.8 39.2 40.8 81.0 81.3 77.6 76.0 74.3

Table 5: We use GSM8K, MathQA, CM17K, and Ape210K in our ablation study with different training
strategies described in 4.6 in Italics. The first ablation (a1) aims to investigate the impact of the instructions,
while the rest two ablations (a2, a3) can examine the improvement brought by the generalization from
other views.

CoT Eval EQN Eval Tree Eval
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(a) Results on BLOOMz-7B.
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(b) Results on Vicuna-7B.

Figure 2: Experimental results with different backbones on GSM8K. X-axis indicates the evaluation views
and Y-axis indicates the accuracy.
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Figure 3: Experimental results on the MAWPS
dataset. X-axis indicates the training datasets and
Y-axis indicates the accuracy.

increasing the number of datasets used in training
with MinT boosts performance across all views. It
is noteworthy that although the MAWPS dataset is
originally annotated using the EQN view, our model
manages to attain an accuracy of 58.5% when at-
tempting to solve problems using step-by-step CoTs.
This observation indicates that the problem-solving
ability acquired from the training datasets can in-

deed be transferred to the held-out datasets. More
interestingly, it suggests that our method may be
used to facilitate tasks like held-out data annotation.

4.6. Ablation Study

To demonstrate the effectiveness of our proposed
approach. We implement three ablated studies: 1)
Only use the original view for every dataset, and
postpending the corresponding instructions to the
training samples; 2) Only use the EQN view from
GSM8K, MathQA, CM17K, and Ape210K and keep
the instructions; 3) Only use the Tree view from
GSM8K, MathQA and Ape210K and also keep the
instructions.

As shown in Table 5, the first ablation proves that
the instructions can bring some improvements on
certain datasets. And the other two ablations show
that unifying the views of solution can also bring
some improvements to the performance. Nonethe-
less, when compared with these baselines and
ablations, our proposed MinT performs the best,
thereby reaffirming that MinT truly capitalizes on
the generalization across diverse solution views of
mathematical problems.
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Figure 4: Our case study on the held-out dataset - MAWPS.

4.7. Adaptivity on Different Backbones

We replace our original backbone model LLaMA-
7B with other two state-of-the-art models, namely
BLOOMz-7B (Muennighoff et al., 2022) and Vicuna-
7B (Chiang et al., 2023). This substitution allows
us to observe how well MinT adapts to different
language models. We trained three different mod-
els on them: one trained on the GSM8K dataset,
another trained on a combination of four clean
math datasets, and a third trained on a total of
six datasets that additionally consider noisy data.

4.8. Case Study

Figure 4 illustrates a sample problem from the
MAWPS dataset, which is fed into three distinct
models discussed in Section 4.4. The first model
yields an completely wrong solution, possibly due
to the significant disparities in solution patterns be-
tween GSM8K and MAWPS, leading to the model’s
inability to generalize for problems in the held-out
set. The second model’s solution, though only par-
tially correct and incomplete, suggests an improve-
ment in its reasoning capabilities. The third model,
trained with all six datasets, effectively solves the
problem in this example, thereby affirming the effi-
cacy of our methodology in improving mathematical
reasoning ability.
As illustrated in Figure 2, our method demonstrates
the same pattern on both backbones as that on
the LLaMA-7B backbone, i.e., incorporating more
training data can further enhance performance
with the aid of MinT. Also, it is notable that the
Vicuna backbone has a better performance on the
CoTclean view. This may be due to that the Vicuna
model is more familiar with the “explanation” style
data than symbolic equations as it is continually
fine-tuned on dialogues. This means that the ef-
fectiveness of our method is not restricted to one
specific model and it can also be extended to other
LMs and benefits from their own characters. This
consistent performance across different backbones
validates the robustness of MinT and supports its
applicability in a wider range.

5. Discussion
5.1. Conclusions
In this paper, we propose MinT , a novel multi-view
fine-tuning approach to enhance the mathemati-
cal reasoning capabilities of language models. By
framing diverse annotation formats across datasets
as distinct “view” of solutions, our method enables
models to learn from these unique problem-solving
perspectives. We also provide a data-efficient view-
transformation strategy, expanding the model’s abil-
ity to generalize and reason by converting the
data annotated in one view into multiple different
views. Through MinT, our model exhibits strong per-
formance on multiple benchmarks, outperforming
prior knowledge distillation-based techniques. Our
experiments demonstrate promising generalization
ability and adaptivity to noisy data, held-out data,
and across model architectures.

5.2. Broader Impact
We believe MinT provides a scalable and flexible
approach for specialized LMs by supervised fine-
tuning. Many other reasoning tasks, such as com-
monsense or symbolic reasoning, can be solved
through diverse paths. Investigating how to lever-
age MinT for general flexible reasoning is an excit-
ing future direction.
Furthermore, MinT demonstrates effective control
over language model fine-tuning. By guiding the
model with simple instruction strings, we can take
advantage of different types and even incomplete
and irrelevant data, while still performing well for
downstream tasks. This opens possibilities for fu-
ture design of large-scale general instruction tuning
and task-specific fine-tuning.
Additionally, our approach could be seamlessly in-
tegrated with verifier-based methods (Cobbe et al.,
2021; Zhu et al., 2023; Lightman et al., 2023), rein-
forcement learning (Ouyang et al., 2022; Touvron
et al., 2023b) and rejection sampling (Yuan et al.,
2023). Using multi-view verifiers or reward mod-
els to score model outputs could provide stronger
feedback signals to guide the training/fine-tuning
of language models.
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