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Abstract
Recent research has shown that large language models rely on spurious correlations in the data for natural language
understanding (NLU) tasks. In this work, we aim to answer the following research question: Can we reduce
spurious correlations by modifying the ground truth labels of the training data? Specifically, we propose a simple yet
effective debiasing framework, named Soft Label Encoding (SoftLE). First, we train a teacher model to quantify
each sample’s degree of relying on shortcuts. Then, we encode this shortcut degree into a dummy class and use
it to smooth the original ground truth labels, generating soft labels. These soft labels are used to train a more
robust student model that reduces spurious correlations between shortcut features and certain classes. Extensive
experiments on two NLU benchmark tasks via two language models demonstrate that SoftLE significantly improves
out-of-distribution generalization while maintaining satisfactory in-distribution accuracy. Our code is available at
https://github.com/ZiruiHE99/sle
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1. Introduction

Large language models (LLMs), such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and GPT-3 (Brown et al., 2020), have
achieved remarkable performance in various natu-
ral language understanding (NLU) tasks. However,
recent studies suggest that these LLMs heavily
rely on shortcut learning and spurious correlations
rather than developing a deeper understanding
of language and semantic reasoning (Mudrakarta
et al., 2018; Lapuschkin et al., 2019; Niven and
Kao, 2019). Across multiple NLU tasks, this re-
liance on shortcuts and spurious correlations gives
rise to biases within the trained models, which re-
sults in their limited generalization capability on
out-of-distribution (OOD) datasets (McCoy et al.,
2019; Zhang et al., 2019; Yang et al., 2019).

To build more robust models free from biases,
several debasing methods have been proposed,
e.g., example reweighting that places higher train-
ing weights on hard training samples (Schuster
et al., 2019), and model ensembling (He et al.,
2019; Clark et al., 2019; Mahabadi et al., 2020),
which adjust the weights of mislabeled samples
to prevent the model from learning spurious as-
sociations. Extending these foundational tech-
niques, prevailing methods e.g., confidence reg-
ularization (Utama et al., 2020), and LTGR (Du
et al., 2021) measure the shortcut degree of each
training sample, achieving better results in mitigat-
ing shortcut learning. However, the majority of
existing debiasing methods rely on manual anno-
tation and necessitate prior knowledge of biased
features within the dataset. Manual annotation can
be a time-consuming and labor-intensive process,

and it remains challenging to comprehensively ad-
dress bias across the entire dataset. Therefore,
the ideal debiasing method should be autonomous
and can be widely deployable on different tasks.

Motivated by the crucial observation that the lim-
ited robustness of LLMs on NLU tasks arises from
spurious correlations learned during training, we
aim to improve generalization and robustness by
decreasing the likelihood of learning such correla-
tions. Previous work has demonstrated that hard
labels cannot express the uncertainty of sample la-
beling, and some boundary samples are forced to
be labeled into definite categories, which increases
the risk of overfitting (Xie et al., 2016; Salimans
et al., 2016). Recent research on the Natural Lan-
guage Inference (NLI) task has confirmed similar
observations. After many instances are classified
into the correct class, their softmax confidences
(confidence prediction) will continue to approach
the hard labels, contributing to a further reduc-
tion in the objective function value (cross-entropy
loss) (Tu et al., 2020). This phenomenon is sus-
pected to be detrimental to model generalization,
thus we are further motivated to explore the follow-
ing research question: Can we reduce spurious
correlations by modifying the ground truth labels of
the training data?

In this work, we propose an autonomous debias-
ing method called Soft Label Encoding (SoftLE) to
address the issue of shortcut learning in NLU mod-
els through a data-centric perspective. We first
train a teacher model with hard labels to determine
each sample’s degree of relying on shortcuts. We
then add one dummy class to encode the shortcut
degree, which is used to smooth other dimensions

https://github.com/ZiruiHE99/sle
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Figure 1: An overview of the proposed Soft Label Encoding framework.

in the ground truth label to generate soft labels
(see Figure 1). This new ground truth label is used
to train a more robust student model. The key
idea of our method is to reduce spurious correla-
tions between shortcut tokens and certain class
labels in the training set. This can be leveraged to
discourage models from relying on spurious corre-
lations during model training. This also implicitly
encourages the models to derive a deeper under-
standing of the task. This label smoothing method
is efficient since it directly operates on labels and
does not require manual feature filtering. The ma-
jor contributions of this work can be summarized
as follows:

• We propose a simple yet effective debiasing
framework called Soft Label Encoding (Sof-
tLE) to mitigate shortcut learning in natural
language understanding models by modifying
the ground truth labels during training.

• We provide a theoretical analysis showing how
SoftLE reduces spurious correlations between
shortcut features and certain class labels in
the training data, discouraging models from
relying on shortcuts.

• Experimental results demonstrate that Sof-
tLE improves out-of-distribution generalization
while maintaining in-distribution accuracy.

2. Proposed Method

In this section, we introduce the proposed Soft
Label Encoding (SoftLE) debiasing framework.

2.1. SoftLE Debiasing Framework

Problem Formulation. NLU tasks are usually
formulated as a general multi-class classification
problem. Consider a dataset D = {(xi, yi)}Ni=1

consisting of the input data xi ∈ X and the hard
labels yi ∈ Y, the goal is to train a robust model
with good OOD generalization performance.
Teacher Model Training. A biased teacher model
fT containing K classes is first fine-tuned on the
corresponding NLU dataset. As shown in Figure 21,

1In Figure 2, ‘dev’ refers to the development set of
the FEVER dataset, and ‘sym1’ and ‘sym2’ are the OOD
sets of the FEVER dataset.

Epoch

Ra
tio

Figure 2: Percentage of over-confident samples
in FEVER and OOD test sets during training the
teacher model. We set the threshold ξ = 0.9.

when this model starts to converge, the percent-
age of over-confident samples in the in-domain set
exceeds 0.9, while this ratio is around 0.8 for the
OOD sets, indicating there are more over-confident
samples in in-domain set. The in-domain test set
contains both shortcut samples and difficult sam-
ples, whereas the two OOD sets primarily contain
difficult samples. Therefore, the inconsistency in
confidence ratios indicates that samples utilizing
more shortcut features will be predicted by the
teacher model with a higher softmax confidence.
In the following, we leverage the prediction confi-
dence of the model to quantify the degree of short-
cut for each training sample.
Quantifying Shortcut Degree. We fix the param-
eters of teacher model fT and calculate the logit
value and softmax confidence of training sample
xi as zTi and σ(zTi ) respectively. Then, we set
the threshold ξ and hyperparameters to calculate
the shortcut degree for each over-confident sam-
ple(i.e., σ(zTi ) > ξ):

si,j = logα(σ(z
T
i ) + β). (1)

Soft Label Encoding. Equipped with the short-
cut degree, we then transform a K-class classifi-
cation problem into a K+1 class problem by intro-
ducing a new dummy category. The value of the
dummy category is given as the shortcut degree
value si,j . The original label 1 in one-hot form yi
is transformed into smoothed label: 1 − si,j . We
illustrate this process using the MNLI task as ex-
ample (see Figure 1). Here, we set ξ as 0.9. If
the teacher model predicts a high softmax confi-
dence σ(zTi ) > 0.9 for a sample, then the original
three-class classification label yi = [0, 1, 0] of this
sample will be transformed into a four-class label
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Algorithm 1: Proposed SoftLE framework.

Input: Training data D = {(xi, yi)}Ni=1.
1 Set hyperparameters α and beta.
2 while training stage do
3 Train teacher network fT (x). Fix its

parameters. Initialize the student network
fS(x);

4 Shortcut degree: si,j = logα(σ(z
T
i ) + β);

5 Put si,j in the dummy class position;
6 Soft label: 1− si,j for the 1 position of yi;
7 Proposed debiasing training loss:

LSL = −
∑N

i=1

∑K+1
j=1 y′

ij log(pij); Training
loss for first few epochs:
LHL = −

∑N
i=1

∑K+1
j=1 yij log(pij),;

8 Specifically, the first two epochs we use LHL,
while later epochs we use LSL.

9 while inference stage do
10 Ignore the dummy class and make the

prediction based on values of the first K
categories: ŷi = argmaxj∈[1,··· ,K]pi,j .

y′i = [0, 1− si,j , 0, si,j ]. For training samples with a
large shortcut degree, more smoothed new labels
will be obtained. In contrast, we preserve original
hard labels for samples with a low shortcut degree.

2.2. Overall Framework

We present the overall framework in Algorithm 1.
The dummy class is only required during the train-
ing stage and will be discarded during inference.

The Training Stage. We use standard cross en-
tropy loss to train the debiased model:

LSL = −
N∑
i=1

K+1∑
j=1

y′
ij log(pij), (2)

where pij is the predicted probability for input xi to
have label j, and y′ij is the transformed label for
training example i.

During training, we replace the proposed loss
LSL with the standard hard label loss LHL for the
first two epochs as a warming-up training:

LHL = −
N∑
i=1

K+1∑
j=1

yij log(pij), (3)

where yij stands for the one-hot label for (K+1)-
class classification of the training example. In the
last few epochs, we switch back to using LSL. This
has been demonstrated to retain better ID perfor-
mance, while achieving similar debiasing perfor-
mance. We give further analysis in Section 3.3.

The Inference Stage. It is worth noting that during
the inference stage, we will ignore the dummy class
(i.e., the K+1 class) and predict based on the first
K classes: ŷi = argmaxj∈[1,··· ,K]pi,j .

Figure 3: We compared the distribution of softmax
confidences for the samples misclassified by sof-
tLE and the original model (i.e., teacher model) on
Fever and Symm.1. Y-axis denotes the ratio.

3. Experiments

In this section, we evaluate the proposed SoftLE
debiasing framework to answer three research
questions: 1) Compared to baseline methods, can
the proposed SoftLE framework achieve the opti-
mal trade-off between in-domain and OOD perfor-
mance? 2) Why does the proposed SoftLE frame-
work work? 3) What is the key difference between
SoftLE and POE in improving the model gener-
alization performance using several benchmark
datasets?

3.1. Experimental Setting

Tasks and Datasets We explore two NLU tasks:
natural language inference (NLI) and fact verifica-
tion. For NLI, we use the MNLI dataset (Williams
et al., 2018) to train biased and de-biased models.
We evaluate these models on the in-distribution(ID)
MNLI-dev set and the out-of-distribution(OOD)
HANS dataset (McCoy et al., 2019) to test for gen-
eralization. For fact verification, we use the FEVER
dataset (Thorne et al., 2018) as our ID data. We
then evaluate the model’s OOD performance on
the FEVER symmetric dataset (Schuster et al.,
2019). For both tasks, we employ accuracy as the
metric to evaluate the model performance on the
ID and OOD sets.Further details are provided in
Appendix A.
Comparing Baselines We compare our proposed
method with four representative baseline meth-
ods: Product of Experts (POE) (Clark et al.,
2019; Mahabadi et al., 2020), Example Reweight-
ing (ER) (Schuster et al., 2019), Regularized
Confidence (Utama et al., 2020), and Debiasing
Masks (Meissner et al., 2022). More details of the
baselines are given in Appendix B.
Reproducibility The implementation is based on
PyTorch and the Hugging Face package. We aim
at complete reproducibility by providing complete
code and clear reproduction instructions in our
repository.2

2https://github.com/ZiruiHE99/sle
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MNLI(acc.) FEVER(acc.)
Models DEV HANS Avg. DEV Symm.1 Symm.2 Avg.
Original 84.5 62.4 73.5 85.6 55.1 62.2 67.6
Reweighting (Schuster et al., 2019) 81.4 68.6 75.0 84.6 61.7 64.9 70.4
PoE (Clark et al., 2019; Mahabadi et al., 2020) 84.2 64.6 74.4 82.3 62.0 64.3 69.5
Reg-conf (Utama et al., 2020) 84.3 69.1 76.7 86.4 60.5 66.2 71.0
Debias-Mask (Meissner et al., 2022) 81.8 68.7 75.3 84.6 - 64.9 -
SoftLE 81.2 68.1 74.7 87.5 60.3 66.9 71.5

Table 1: Model performance on in-distribution and OOD test set. We select the version that achieves
the best performance in the original paper for the listed baseline methods. The Avg. columns report the
average score on in-distribution and challenge sets. We highlight the best performance on each dataset.

3.2. Comparison with Baselines

We compare our approach against baselines and
report the results in Table 1. We observe that
our SoftLE method consistently improves the per-
formance on both challenge sets. However, the
in-distribution performance on HANS drops slightly.
We also test the framework using RoBERTa-
base (Liu et al., 2019). The results are provided in
Table 3 for the FEVER task. The results indicate
that our proposed method could improve general-
ization over two challenging OOD test sets while
having only a minor sacrifice on the in-domain
test set. Figure 3 reveals that despite the biased
teacher model assigning high softmax confidences
for both in-domain and OOD samples, a larger pro-
portion of high-confidence OOD samples are mis-
classified. It further illustrates that SoftLE assigns
lower softmax confidences for over-confident sam-
ples, thereby effectively reducing the probability of
the model incorrectly predicting OOD samples.

3.3. Ablation Study

In Section 2, we mentioned that a better trade-
off between ID and OOD performance can be
achieved by adjusting the loss function during train-
ing the debiasing model. To confirm that the com-
bination of this adjustment strategy is necessary
to achieve our results, we provide an ablation ex-
periment where the debiasing loss LSL is replaced
with LHL during different training epochs. Previous
work has shown that shortcut features tend to be
picked up by the NLU model in very early itera-
tions (Du et al., 2021). Our results on FEVER sup-
port this idea, as shown in Table 2, where we find
that replacing training loss in the first two epochs
outperforms other strategies. As such, SoftLE pre-
vents models from learning spurious correlations,
resulting in a lower performance increase on ID
and OOD sets during the early stages of training
the debiasing model. Thus, this adjustment strat-
egy leverages superficial features, while SoftLE
prevents models from solely relying on superficial
features, ultimately achieving a delicate balance.

Method FEVER Symm.1 Symm.2
Original 85.6 55.1 62.2
SoftLE w/o Replacing 86.6 57.7 63.9
SoftLE-F2 (Ours) 87.5 60.3 66.9
SoftLE-L2 87.1 57.8 64.4

Table 2: Our experimental results comparing the
original method against several loss function ad-
justment strategies. SoftLE-F2 denotes training
with LHL for the first 2 epochs, while SoftLE-L2
denotes training with LHL for the last 2 epochs.

3.4. Why Does Our Algorithm Work?

For an over-confident input sample x = (xb, x−b),
let xb denote biased features of the sample, and
let x−b represent the remaining features of the
sample except for the biased ones. It is generally
considered that a bias model only uses the biased
features xb to predict the ground-truth label:

p(ytruth|x) = p(ytruth|xb). (4)

Over-confidence indicates that the predicted prob-
ability p(ytruth|xb) of the sample is very high. In
other words, for over-confident samples, there is a
relatively high spurious correlation between labels
and bias features.

In comparison, when we transform the label of
the sample, i.e., altering ytruth to ysmooth, it is proved
in (Clark et al., 2019) that the predictive probability
p(ysmooth|x) can be computed as follows:

p(ysmooth|x) ∝ p(ysmooth|x−b)p(ysmooth|xb). (5)

For over-confident samples, we find that the la-
bel transformation actually mitigates the poten-
tial correlation between labels and biased fea-
tures. In other words, it significantly lowers
the predictive probability given biased features,
i.e., p(ysmooth|xb) < p(ytruth|xb). Thus, to maxi-
mize p(ysmooth|x), our model has to depend more
on unbiased features x−b to obtain a higher
p(ysmooth|x−b) value.
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Method FEVER Symm.1 Symm.2
Original-RoBERTa 88.1 59.2 64.7
SoftLE-RoBERTa 87.9 63.2 67.5

Table 3: We validated the effectiveness of SoftLE
using RoBERTa-base model on FEVER dataset.

Figure 4: An intuitive comparison between SoftLE
framework with original method and Product of Ex-
perts (POE). Y-axis denotes softmax confidence.

3.5. Difference between SoftLE and
POE?

Recent studies indicate that in the PoE training,
the debiasing model is encouraged to learn from
the errors of the biased model instead of mimick-
ing (Sanh et al., 2021). However, Figure 3 reveals
that there exists a gap between misclassified sam-
ples of ID and OOD sets. The abuse of spurious
correlations results in more misclassified samples
with high softmax confidence in the OOD set, and
is not consistent with the cause of errors in the ID
set. A key difference thus arises: SoftLE method
scale down all the over-confident samples while
these samples are less focused in PoE training. We
also provide an intuitive comparison between the
proposed SoftLE framework with standard model
training and PoE in Figure 4. The results demon-
strate that SoftLE training attains a comparable
outcome to the PoE approach concerning confi-
dence reduction. However, the introduction of bias
scores reveals its potential to enhance the model’s
ability to autonomously acquire biases in datasets
and focus on the intended NLU tasks.

4. Related work

In this section, we briefly review two lines of re-
search that are most relevant to ours.
Shortcut Learning Phenomenon. Recent stud-
ies indicate that shortcut learning has significantly
hurt the models’ robustness (Lapuschkin et al.,
2019; Niven and Kao, 2019; Du et al., 2023).
Fine-tuning pre-trained models can rapidly gain in-
distribution improvement while it also gradually in-
creases models’ reliance on surface heuristics (De-
vlin et al., 2019). (He et al., 2019) have demon-
strated that a particular label is highly correlated
with the presence of several phrases, independent
of the other information provided. Several studies
have revealed that artificially constructed samples
with heuristic features are very likely to trigger erro-

neous judgments of the model (McCoy et al., 2019;
Schuster et al., 2019; Zhang et al., 2019; Yang
et al., 2019).
Shortcut Learning Mitigation. Previous work
demonstrated that training on adversarial data has
benefits for generalization capabilities (Wang and
Bansal, 2018; Yaghoobzadeh et al., 2021). Sev-
eral methods were proposed to generate a large-
scale data set for the NLI task to reduce anno-
tation artifacts (Zellers et al., 2018; Wang and
Culotta, 2020). The main concern is that when
generating new data, new biases can be intro-
duced. Some other approaches aim to remove
strongly biased samples from the dataset (Sak-
aguchi et al., 2019; Zhang et al., 2019; Min et al.,
2020; Bras et al., 2020). However, these removing-
sample methods harm the in-distribution perfor-
mance significantly, and the criteria for the defini-
tion of a bias-free dataset are very obscure (Xiong
et al., 2021). Recent studies indicate that a por-
tion of the pre-training model’s parameters are cor-
related with surface statistical patterns (Gordon
et al., 2020). Hence pruning this portion of the
parameters can reduce the model’s memory for
spurious correlations (Sanh et al., 2020; Meissner
et al., 2022). Most recently, some approaches
based on the model interpretability perspective
have also been proposed that also have the poten-
tial to autonomously identify dataset bias (Wu and
Gui, 2022; Wang et al., 2022).

5. Conclusions and Future Work

Recently debiasing NLU tasks has attracted in-
creasing attention from the community. We pre-
sented SoftLE, an autonomous and efficient frame-
work for debiasing NLU models. By encoding
each training sample’s degree of relying on short-
cuts into soft labels, SoftLE discourages models
from learning spurious correlations during training.
Across multiple benchmark tasks, SoftLE achieves
a favorable trade-off between in-distribution accu-
racy and out-of-distribution generalization. Our
work highlights the promise of data-centric debias-
ing techniques to build more robust and generaliz-
able language models.

There are various ways to quantify the short-
cut degree. Our debiasing framework only at-
tempts one solution to generate the shortcut de-
gree of each sample. Going forward, in order to
better measure the shortcut degree of the train-
ing samples, a more comprehensive analysis is
needed. Additionally, although our proposed debi-
asing framework is general, we have only applied
it to two NLU tasks (MNLI and FEVER) and two
types of LLMs (i.e., BERT and RoBERTa). In the
future, we plan to extend our debiasing framework
to more NLU tasks and additional types of LLMs.
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A. Details of Tasks and Datasets

Natural Language Inference (NLI) is a task that
involves understanding and inferring logical rela-
tionships between linguistic texts. We select the
MNLI dataset (Williams et al., 2018) to train bi-
ased and de-biased models that will evaluate in-
distribution performance on the MNLI-dev dataset
and out-of-distribution performance on the HANS
dataset (McCoy et al., 2019). The samples in
the HANS dataset are generated by some simple
heuristic rules that enable correct classification by
relying only on surface features (e.g., word overlap,
negation, etc.). The purpose of the HANS dataset
is to assess how well the model really performs in
terms of inference ability, rather than relying only
on shallow surface features.
Fact Verification is a task that evaluates com-
puter models to make inferences and judgments
about the accuracy of a given factual statement.
The FEVER dataset (Thorne et al., 2018) pro-
vides claim-evidence pairs and labels for three cat-
egories: Supports, Refutes, and NEI(Not Enough
Info). The FEVER symmetric dataset (Schuster
et al., 2019) contains 2 subsets with 717 and 712
manually generated claim-evidence pairs, respec-
tively, where the synthetic pairs hold the same re-
lationships (e.g., SUPPORTS or REFUTES) but
express different and opposite facts. The goal is
to verify whether relying on the cues of the claims
leads to incorrect predictions.

B. Details of Baselines

Product of Experts (POE) (Clark et al., 2019;
Mahabadi et al., 2020) is ensemble learning-based
technique where the predictions of multiple "expert"
models are combined by taking their product.
Example Reweighting (ER) (Schuster et al.,
2019) allocates greater weights to instances of
the minority class, consequently incentivizing the
model to give increased attention to these in-
stances, thereby enhancing its capacity to accu-
rately identify the less represented class.
Regularized Confidence (Utama et al., 2020)
is motivated by the fact that overconfidence can
indicate that the model is not well-calibrated and
may perform poorly on unseen data. To address
this issue, a regularization term is added to the loss
function to encourage the model to output a more
uniform (or less confident) probability distribution.
Debiasing Masks (Meissner et al., 2022) removes
specific weights of the network that is associated
with biased behavior without altering the original
model. A mask search is performed to identify and
remove those weights.
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