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Abstract

Instruction Tuning has the potential to stim-
ulate or enhance specific capabilities of large
language models (LLMs). However, achiev-
ing the right balance of data is crucial to pre-
vent catastrophic forgetting and interference
between tasks. To address these limitations
and enhance training flexibility, we propose
the Mixture-of-LoRAs (MoA) architecture –
a novel and parameter-efficient tuning method
designed for multi-task learning with LLMs.
In this paper, we start by individually train-
ing multiple domain-specific LoRA modules
using corresponding supervised corpus data.
These LoRA modules can be aligned with the
expert design principles seen in Mixture-of-
Experts (MoE). Subsequently, we combine the
LoRAs using an explicit routing strategy and
introduce domain labels to facilitate multi-task
learning, which helps prevent interference be-
tween tasks and ultimately enhances the per-
formance of each individual task. Further-
more, each LoRA model can be iteratively
adapted to new domains, allowing for quick
domain-specific adaptation. Experiments on
diverse tasks demonstrate superior and robust
performance of our approach, which will also
further promote the application of domain-
specific LLMs.

1 Introduction

Large language models (LLMs) have played a piv-
otal role in expediting the advancement of natu-
ral language processing (NLP), offering a versa-
tile and task-agnostic foundation that underpins
an extensive array of applications. The intrinsic
diversity found in domain-specific data poses a
substantial challenge in training a general-purpose
base LLMs. Consequently, there has been a
surge in the adoption of domain-specific LLMs
to tackle intricate problems within specialized do-
mains, such as SQL-PaLM (Sun et al., 2023),
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Figure 1: Comparing different LoRA models using
multi-task parameter fusion method and corresponding
task method.

BloombergGPT (Wu et al., 2023), ChatLaw (Cui
et al., 2023), pdfGPT (Tripathi, 2023). In real-
world application scenarios, the demand often
arises for a multitude of customized capabilities.
LLMs with multiple customized capabilities can
efficiently address a diverse range of user prob-
lems, and each specific functional module can be
optimized individually.

Domain specification techniques are key to
make large language models disruptive in vari-
ous applications (Zhao et al., 2023). To learn
sufficient domain knowledge and not lose ba-
sic capability, adapter-based fine-tuning methods
(e.g., Adapters (Houlsby et al., 2019), LoRA (Hu
et al., 2021)) introduce a limited number of
domain-specific parameters to retain domain-
related knowledge and do not need to fine-tuning
all parameters of the pre-trained model, which can
effectively reduce the training cost of LLMs.

In order to obtain multiple customized capa-
bilities, the simplest and efficient fine-tuning ap-
proach is to directly mix data from multiple do-
mains together and only add one LoRA module
for instruction fine-tuning. The second is some
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two-stage approaches. We first train multiple do-
main LoRA modules individually, and then in-
troduce a domain classifier to select appropriate
LoRA model. In addition, Pfeiffer et al. (2020);
Huang et al. (2023) add the AdapterFusion layer
and element-wise LoRA composition to implic-
itly fuse parameter knowledge of multiple task
adapters. The MoE (Shen et al., 2023) introduces
multiple experts to process different types of input
data. Jiang et al. (2023) is to consider the outputs
of ensemble LLMs comprehensively.

However, these approaches have two main is-
sues. First, in the practical application scenario,
there are often multiple destructive domain tasks
with heterogeneous and imbalance training data,
as well as limited computing resources. Therefore,
the implicit parameter fusion methods exist mu-
tual disturbance, which results in degraded model
performance on in-domain tasks, as illustrated in
Figure 1. We often focus more on the domain-
specific expertise of a domain-specific LLM than
its generalization performance. In addition, the
MoE mechanism needs to be trained from scratch
based on a new model structure and a large amount
of training corpus. The ensemble LLMs require
sufficient computing resources to deploy multiple
independent LLMs simultaneously.

In this paper, we address these limitations and
propose an end-to-end parameter-efficient tuning
method designed for multi-task learning on LLMs,
dubbed MoA. First, we design a routing mech-
anism within decoder-only model architecture to
automatically select LoRA experts, which can be
applied to current mainstream LLMs, and can
simultaneously deploy LoRA modules of multi-
ple tasks with limited computing resources (us-
ing the same LLM). Meanwhile, our comprehen-
sive model can still achieve excellent performance
on different types of tasks. Additionally, to im-
prove the efficiency of training and inference, we
implement a parallel processing strategy of dif-
ferent domain samples within a batch during the
training process, and a LoRA expert selection ap-
proach in the inference time. Our approach lever-
ages the power of different expert models and the
base LLM, and the complementarity of knowledge
in different domains. In summary, our contribu-
tions are as follows:

• We propose a MoA architecture for efficient
multitask fine-tuning, which can avoid the in-
terference and data imbalance between het-

erogeneous tasks and easily perform iterative
optimization of single task.

• We implement an explicit routing strategy in
the training process, which can leverage the
knowledge complementarity to further im-
prove the single task performance and en-
sures the inference efficiency.

• Extensive experiments on various bench-
marks are conducted to verify the effective-
ness of our approach. Meanwhile, it is flexi-
ble to combine multiple domain-specific Lo-
RAs to form a comprehensive LLM.

2 Related Work

Domain Specialization of LLMs. The ap-
proaches in LLM domain specialization can be
categorized into three corresponding classes of ap-
proaches: external augmentation, prompt crafting,
and model fine-tuning (Zhao et al., 2023). We fo-
cus on the third method, which involves updat-
ing the LLM’s parameters to incorporate domain-
specific knowledge directly into the model. Be-
cause the current LLMs have billions of param-
eters and the phenomenon of catastrophic for-
getting, we use adapter-based fine-tuning (e.g,
Adapter, LoRA) to train multiple domain experts
in advance on different task data. LoRA is a
parameter-efficient fine-tuning method, which fa-
cilitates the adaptation of LLMs using a small-
scale external module. As such, LoRA tuning
presents a resource-efficient technique to quickly
adapt LLMs for novel tasks with restricted train-
ing data.
Mixture-of-Experts. The Mixture of Experts
(MoE) is an ensemble method, often visualized
as a collection of sub-modules, or ’experts’, each
specializing in processing different types of input
data. Each expert is controlled by a router that is
then selectively activated based on the type of in-
put data. This technique achieves excellent perfor-
mance in other domains, including computer vi-
sion, speech recognition and multi-modal applica-
tions (Fedus et al., 2022a). Inspired by the idea of
MoE, we regard each task’s LoRA module as a do-
main expert. Meanwhile, we introduce a routing
algorithm to make different domain data automat-
ically choose respective expert, and hence experts
in different domains can be combined into a com-
prehensive model. Furthermore, Shen et al. (2023)
also demonstrates that the combination of MoE
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and instruction tuning can improve task-specific
performance.
Multi-Task Composition. The methods of two-
stage learning or end-to-end multi-task learning
are commonly used to obtain the combination of
multi-task capabilities. The two-stage method re-
quires maintaining a specialized routing model to
serve multiple task models, whose overall perfor-
mance is limited to a single LoRA model. The
end-to-end methods introduce new parameter lay-
ers or perform implicit parameter fusion. Specifi-
cally, Pfeiffer et al. (2020) trains a fusion param-
eter layer to compose the information stored in
the multiple task adapters. Huang et al. (2023)
uses a set of learnable weights to integrate mul-
tiple LoRA modules into a unified module. Al-
though they can obtain some generalization ability
through the combination of parameters trained on
various tasks, these fusion methods result in per-
formance degradation on the original task. Zhao
et al. (2023) also shows that it is difficult to effec-
tively learn all specialized knowledge of different
domains in one LLM.

3 Methodology

The proposed Mixture-of-LoRAs (MoA) can be
observed in Figure 2. Given the variations in
data scales and training complexities, we com-
mence by separately training N LoRA mod-
ules {M1, ...,MN} for N distinct task types
{T1, ..., TN}. It is worth noting that the task
types mentioned here and the domain-specific data
or tasks referred to in the paper have the same
meaning, all representing scenario tasks that re-
quire certain expertise to solve. Initially, we ob-
tain the optimal LoRA module parameters on each
scenario task data. These modules demonstrate
commendable performance within their respective
domains. Subsequently, a routing mechanism is
employed to integrate the N LoRA modules un-
der a shared LLM. Specifically, multiple LoRA
modules are simultaneously incorporated along-
side each transformer layer. Preceding each trans-
former layer, a routing mechanism is inserted to
guide the selection of distinct LoRA experts.

3.1 Learning algorithm

In the first stage, we train a LoRA module for
each of the N tasks, which mitigates the problem
of catastrophic forgetting of base LLM. Different
tasks often have different data scales and training

difficulties. Hence, each LoRA module needs to
be optimized individually. These LoRA modules
can be arbitrarily combined, added, or removed af-
ter initial training. This adapter schemes could en-
able more fine-grained control over which parts of
the LLM are domain-specific.

In the second stage, the N LoRA modules can
be aligned with the MoE’s expert design. We com-
bine the set of N LoRAs using a routing strategy.
While keeping the base LLM parameters Θ fixed,
we introduce router parameters R that learn to se-
lect the appropriate expert for users’ target tasks
(as shown in Figure 2). The trainable router and
LoRA parameters are combined to jointly opti-
mize the autoregressive language modeling tasks.
The training data for this stage is evenly sampled
from the original data of each task, obviating the
need to acquire new, high-quality supervised data.
The final loss of the MoA is the summation of the
language modeling loss and the MoE routing loss:

L = LLM (x) + ηLcls (1)

Here, η is a parameter that controls the weight of
the routing loss and the convergence rate, Lcls is
the cross-entropy loss of expert classification, and
LLM (x) is defined as follows:

LLM (x) =
n∑

i=1

logP (xi|x<i) (2)

In this context, the language modeling task (LM)
is the commonly used objective for pretraining
decoder-only LLMs (e.g., GPT-3 (Brown et al.,
2020)). Here, x represents a sequence of tokens
{x1, ..., xn}. The LM task involves predicting the
target tokens xi autoregressively, based on the pre-
ceding tokens x<i within the sequence.

By dividing the process into two stages: (1)
training domain experts in LoRAs, and (2) com-
bining diverse capabilities through a routing strat-
egy, we effectively address concerns such as catas-
trophic forgetting, task interference, and instabil-
ity during multi-task training.

3.2 Routing Strategy

Prior approaches (Fedus et al., 2022b; Lepikhin
et al., 2020) on routing strategy have typically fo-
cused on learning token-level weighting functions,
often assigning one or two experts per token. This
approach necessitates careful load balancing to en-
sure utilization of all experts, prompting the ex-
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Figure 2: Overall architecture of our proposed MoA.

ploration of explicit balancing mechanisms (Lewis
et al., 2021).

In contrast, we adopt a sequence-level routing
strategy that leverages domain metadata to route
data to LoRA experts. While all token sequences
traverse the weight matrices in LLM’s transformer
layers, during training, each transformer layer em-
ploys a distinct router to assign training data la-
beled with its corresponding domain. The final
routing loss enforces precise data-to-expert as-
signments for each data type. After training with
a modest quantity of balanced data, a robust router
is obtained. Meanwhile, multi-task training en-
hances the generalization of the original tasks.

Throughout the training process, language mod-
eling and router classification tasks complement
each other. However, we enhance expert selection
during inference by employing techniques such as
voting or selecting the last expert (as detailed in
4.4). This optimization aims to enhance genera-
tion efficiency and contextual consistency.

3.3 MoA Architecture
We design an LoRA expert explicitly for each
domain (i.e., eight experts for eight training do-
mains in our multi-domain corpus). LoRA updates
weights using the formula:

W0 + router(Wr,W1, ...,WN )

= W0 + router(Wr, A1B1, ..., ANBN )
(3)

where W0 ∈ Rd×k, Wr ∈ Rhidden_dim×N , A ∈
Rd×r and B ∈ Rr×k. W0 denotes the atten-
tion and feed-forward weight matrices of the base

LLM, whose parameters are fixed. The parame-
ter of router(·) is trainable. Wr is the parameter of
the router, which is implemented by a linear layer.
The AiBi defines the LoRA module Mi, which
is repeated multiple times within each transformer
layer to reduce trainable parameters for adapting
to different domain tasks. The multiple Mi ex-
perts are placed in parallel alongside W0, depart-
ing from previous methods (Pfeiffer et al., 2020;
Gururangan et al., 2022; Huang et al., 2023) that
add shared fusion layers or replace dense feed-
forward layers with multiple experts’ feedforward
networks. The routing algorithm is a key feature in
all sparse expert architectures. We adopt an intu-
itive method to assign different experts to handle
tasks in different domains, which helps avoid in-
terference between tasks. Each transformer layer
adds a router to select the most appropriate expert.
Each router is implemented as a two-layer MLP.
This implementation is simple and doesn’t signifi-
cantly increase the number of training parameters.

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the effectiveness of MoA,
we first conduct experiments on various super-
vised fine-tuning (SFT) datasets of heterogeneous
domains. FINANCE, MEDICINE and LEETCODE

belong to the specialized domain dataset. EXAM,
WEBGPT and GPT4TOOLS limit the output for-
mat of the LLM and allow the model to learn spe-
cial functions. Other datasets include chain-of-
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Domain Source Language # Train (Eval.) Tokens

FINANCE Financial related instructions (Qingyi Si, 2023) EN 1.2M (0.24M)
MEDICINE 10k real conversations between patients and doctors (Li et al., 2023) EN 1.4M (0.28M)
LEETCODE Chinese Open Instruction Generalist (Zhang et al., 2023) CN 9.3M (2.09M)
EXAM CN 3.6M (0.71M)
WEBGPT Retrieval question answering dataset (Nakano et al., 2021) EN 7.4M (1.46M)
GPT4TOOLS A collection of tool-related instructions (Yang et al., 2023) EN 7.5M (1.49M)
COT Several Chain-of-Thought datasets (Longpre et al., 2023) EN 1.1M (0.22M)
STACKOVERFLOW 57k dialogs from StackOverFlow questions (Xu et al., 2023) EN 0.9M (0.18M)

Table 1: Statistics of SFT datasets. # Train (Eval.) Tokens denotes the size of our training and evaluation (i.e.
validation and test) data, obtained via the Qwen tokenizer. We evenly sample about 10k training data and 2k
validation data on each dataset.

thought, dialog, etc. Meanwhile, both English and
Chinese are involved. We show the statistics of all
datasets in Table 1.
Implementation Details. We use the Qwen-7b as
our base LLM, which is the decoder-only archi-
tecture. We use the vocabulary of 151,851 BPE
types, and train with 4,096-token sequences. We
set the total number of training steps based on
this allocated runtime, set 10% of these steps to
be warmup, and use the AdamW (Loshchilov and
Hutter, 2017) optimizer with a cosine learning rate
decay. Learning rate is set to 1e−5. Each worker
processes eight sequences of length 4,096, and
gradients are accumulated over 4 updates. We clip
gradients if their L2 norm exceeds 0.1. In the
inference time, we report test perplexity after a
single run of training on 8 NVIDIA A100 80GB
GPUs.

4.2 Models and Metrics

Single-LORA The first baseline is a LoRA trained
on data within the domain, which could be viewed
as a specialized model for handling domain tasks.
Single-LORA (mixed) We train a single LoRA
on mixed data from all domains. While there is
no explicit conditioning on domain, the gradient
updates during training average across all domains
represented in a batch.
MOA We add multiple domain LoRAs in the
transformer based on the first baselines, and use
routing strategy and domain label information for
multitask training. Under the routing setting, the
test data domain is unknown.
MoE-LORA We leverage the idea of sparsely ac-
tivated Mixture-of-Experts (MoE). We add multi-
ple domain LoRA modules on the bypass of trans-
former layer. Each input token will be processed
by a limited subset of experts. Different from our
MoA, this approach can add any number of ex-

perts and has no concept of data domain.
MoE-LORA (naive) The architecture of this
model is exactly the same as MoE-LoRA, and the
only difference is that we randomly initialize all
LoRA modules.
To comprehensively evaluate the performance of
different models, we use several evaluation met-
rics, including the perplexity (PPL) of gener-
ated texts, and the bilingual evaluation understudy
(BLUE) and the longest common subsequence
(ROUGE-L) between the generated answer and
the gold answer.

4.3 Main results
Classifier+LoRAs The most intuitive method of
integrating multiple LoRA experts is to use a spe-
cific classifier to act as a distributor, as shown in
Figure 3. We train a classifier based on roberta-
base (Liu et al., 2020) using the same training data
as MoA. The specific classification performance
is shown in Table 3. This approach is so flexi-
ble that we can combine multiple LoRA modules
and avoid interference between tasks. However,
the performance of this approach is limited to each
LoRA expert. From the classification results, our
router performs better than the classifier overall.

!
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Figure 3: The flow diagram of classifier+LoRAs.

End-to-end methods The end-to-end methods
mean that one model can directly solve multi-
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Domain Single-LoRA Single-LoRA (mixed) MoA

PPL BLUE ROUGE-L PPL BLUE ROUGE-L PPL BLUE ROUGE-L

FINANCE 7.8479 18.5975 28.6266 7.7214 22.4846 32.5574 7.5287 20.5774 30.6797
MEDICINE 9.5097 13.6096 18.8911 9.0499 13.5373 19.4425 8.4561 13.8811 19.8118
LEETCODE 1.9527 34.8582 47.8152 2.0289 35.2886 46.6290 1.9311 37.4872 49.3256
EXAM 3.1154 3.0871 18.5609 3.1135 4.3259 16.6206 2.9752 4.7942 19.1840
WEBGPT 1.7945 38.8995 41.4447 1.8484 39.6297 42.0700 1.7933 40.2602 43.7395
GPT4TOOLS 2.2525 64.7501 71.4391 2.2497 66.3450 73.1289 2.2123 69.2596 74.5962
COT 2.8126 34.5210 45.7961 2.6474 43.6290 53.2125 2.5931 40.2529 50.3844
S.O. 2.8169 19.9554 29.7282 2.9012 19.4896 28.4694 2.8999 23.0412 31.9793

Average 4.0128 28.5348 37.7877 3.9450 30.5912 39.0163 3.7987 31.1942 39.9626

Table 2: In-domain test-set performance for different training strategies of LoRA. We report PPL, tokenized BLUE
and ROUGE-L above. Both Single-LoRA (mixed) and MoA are tested under the test data of unknown domain
labels and Single-LoRA is tested on the test data of the corresponding domain. PPL is short for perplexity. The
best value per metric on different tasks is in bold.

Domain test size Classifier Router

FINANCE 2000 98.80% 99.60%
MEDICINE 1221 99.92% 99.92%
LEETCODE 1952 99.95% 100.00%
EXAM 1999 99.95% 100.00%
WEBGPT 2000 100.00% 99.85%
GPT4TOOLS 2000 100.00% 100.00%
COT 2000 99.75% 99.95%
STACKOVERFLOW 2000 99.00% 99.90%

Average 1896.5 99.67% 99.90%

Table 3: The classification accuracy of MoA router and
a specific classifier by domain at inference time.

ple tasks even if the test data domain is un-
known. Table 2 shows that test perplexities, blue-
4 and rouge-l, averaged across the eight train-
ing domains. Training in the mixed domain data
is helpful for the overall performance (Perplex-
ity: 4.0128→3.9450, BLUE: 28.5348→30.5912,
ROUGE-L: 37.7877→39.0163). However, the
performance decreases on data with strict out-
put formats such as WEBGPT, STACKOVERFLOW,
which also shows that not all additional domain
information is complementary. We hypothesize
that separate training is advantageous for hetero-
geneous domains. Therefore, we design an effi-
cient multi-task learning method to avoid interfer-
ence between partial tasks. Our approach achieves
significant improvements across all datasets.

In order to further validate the reliability of the
MoA’s performance, we conducts accuracy eval-
uation experiments on datasets with standard an-
swers. The EXAM dataset is utilized for the exper-
iments, as it primarily consists of secondary and
university entrance exam questions, with the ma-
jority being multiple-choice questions (including

Model LoRA LoRA
(mixed) MoA

trainable
parameters 143M 143M 143M*8+1.05M

Table 4: The trainable parameters under different
LoRA combinations. The router module takes up only
1.05M parameters.

single and multiple selections) and a small portion
of true/false questions. Accuracy is calculated by
directly comparing the answers with the reference
answers. Specifically, string processing functions,
regular expressions, etc., are used to parse out spe-
cific options (A/B/C/D) or judgment results (T/F)
from the answers, followed by calculating the ac-
curacy of responses. The final results are pre-
sented in Table 5. Despite the overall low accuracy
due to the difficulty of the questions, the accuracy
of MoA is significantly higher than the other two
models (+5.86%, +5.48%).

Model Total Right Accuracy

Single-LoRA (mixed) 1331 515 38.69%
Single-LoRA 1331 520 39.07%
MoA 1331 593 44.55%

Table 5: The accuracy of responses on the Exam test
dataset.

In addition, this subsection also introduces
GPT-4 as an evaluation expert to assess FINANCE,
MEDICINE, and WEBGPT datasets. As the an-
swers in these datasets do not follow a fixed pat-
tern, this subsection adopts the common evalua-
tion method in the community of LLMs. Evalua-
tion scoring is conducted through a larger model.
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In this study, GPT-4 is utilized to provide accu-
racy scores for the model’s responses to questions
and standard answers. The complete evaluation
prompt is illustrated in Appendix A.

Apart from the three models: Single-LoRA,
Single-LoRA (mixed), and MoA, we also eval-
uates the individual LoRA modules within the
MoA model. These are represented in the table 6
as Single-LoRA of MoA. Due to fluctuations in
scoring by the large language model, each scor-
ing process is invoked three times and the aver-
age is taken. From the experimental results, it
is observed that after multi-task learning training
within MoA, the performance of each LoRA mod-
ule surpasses the original Single-LoRA modules
in each task. When handling specific professional
tasks individually, these modules exhibit outstand-
ing performance. Therefore, through multi-task
learning methods, the performance of multiple
LoRA modules is further enhanced while effec-
tively collaborating.

Model

Score Dataset
Finance Medicine Webgpt

Single-LoRA (mixed) 76.91 57.49 87.92
Single-LoRA 75.99 57.11 88.59
Single-LoRA of MoA 76.30 58.01 89.00
MoA 76.56 60.68 89.27

Table 6: The evaluation scoring of the GPT-4 on the
Finance, Medicine, and WebGPT datasets. The high-
est value per column is in bold and the second highest
value is underlined.

Based on the metrics such as PPL, BLUE,
ROUGE, and accuracy metrics for specific down-
stream tasks presented in the paper, we can con-
clude that our proposed simple and efficient ar-
chitecture effectively enables learning of vari-
ous domain-specific competencies within a sin-
gle large language model, while also avoiding
interference between different tasks. Further-
more, each functional module is relatively inde-
pendent, facilitating efficient consolidation of ad-
ditional data for further optimization. Addition-
ally, this method significantly saves computational
resources during deployment.

4.4 Mixing LoRA Experts at Inference Time

The previous section establishes that our multi-
task training method improves the performance of
the single LoRA expert on test data. In addition,
the mixing of multi-domain data is effective in the

training process. In practice, however, the original
training data scale of the respective tasks is rela-
tively large and textual data to be evaluated may
not come with a domain label.

In these cases, the mixed training of a large
amount of data is unfavorable for our later it-
erations of single tasks. We propose to treat
LoRA1, ..., LoRAN as domain experts, trans-
forming the input text into a matter of expert selec-
tion. The routing strategy is introducing to solve
the problem of interference between tasks. The
parameter of router is shown in Table 4, which
only accounts for a very small percentage. Our
approach is parameter-efficient and selective com-
plementarity between tasks. The results of evalua-
tion on the test data of unknown domain are shown
in Table 2.

To further explore the actual effect of the rout-
ing module, we test its selection ability in the in-
ference process. The number of our routers is con-
sistent with the number of transformer layers in
our LLM. Each router is implemented with a linear
layer. Therefore, to improve the efficiency of the
inference process and the consistency of genera-
tion, we choose to use (1) voting of all routers and
(2) the result of last router as the selected LoRA
module in the subsequent inference process. The
experimental results show that the classification
performance of the last router is more stable. Fi-
nally, we only use 1.05M routing parameters to
achieve an average accuracy of 99.90% in Ta-
ble 3. Overall, the router plays two key roles in our
model architecture. One is to learn the comple-
mentarity of non-heterogeneous domain knowl-
edge and in the training process. The other is to
select appropriate LoRA expert to solve problems
in unknown domains in the inference process.

Methods PPL BLUE ROUGE-L

MoE-LoRA 3.8578 29.1640 37.5960
MoE-LoRA (naive) 3.7969 29.4170 37.3917

MoA 3.7987 31.1942 39.9626

Table 7: The averaged test performance comparison on
eight tasks. All of the above methods have the same
number of LoRA experts and have exactly the same
model parameters.

4.5 Ablation Studies

We further conduct specific experiments to inves-
tigate the effectiveness of different components in
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Query: There are 14 chickens in
the coop, and twice that many in
the run. There is 4 less than
double the number of chickens
free ranging as in the run. How
many chickens are free ranging?
Let's be accurate as possible.

Gold Answer: Coop:14 chickens.
Run:14(2) = 28 chickens. Free
Range:28(2) - 4 = 52 chickens.
The answer: 52.

Single-LoRA There are 14 * 2 = 28 chickens in the run. There
are 28 - 4 = 24 chickens free ranging. The
answer: 24.Single-LoRA (mixed)

MoE-LoRA
There are 14 * 2 = 28 chickens free ranging.
The total number of chickens is 14 + 28 = 42.
The answer: 42.

MoE-LoRA (naive)
The number of chickens free ranging is 2 * 14 =
28. There are 28 - 4 = 24 chickens in the coop.
Thus, there are 14 + 24 = 38 chickens in total.

MoA

The total number of chickens in the coop and
run is 14 + 14 = 28. Double the number of
chickens in the run is 28 * 2 = 56. There are 56
- 4 = 52 chickens free ranging. Final answer: 52.

√

×

×

×
×

Figure 4: Case study of the predicted output of different models.

our model.
Impact of Domain Label Information In addi-
tion to the language modeling loss, we also add the
domain label routing loss in the training process.
To verify the effectiveness of our proposed mech-
anism, we remove the routing loss and our model
devolved into MoE-LoRA. Therefore, the MoE-
LoRA does not introduce explicit domain label
information in the training and inference process
and guarantees the same number of parameters as
MoA. As shown in Table 7, MoA has achieved
an overall improvement over MoE-LoRA, which
demonstrates that the domain label information is
useful for different tasks. Furthermore, we evalu-
ate the performance of single LoRA module after
multi-LoRA joint training in Table 8. The MoA
further improves the perplexity performance of
each LoRA module from 4.0128 to 3.7962, while
MoE-LoRA causes a slight decrease. Therefore,
when we need to expand to more tasks or com-
bine multiple functions, MoA is more flexible and
effective.

Domain Single-LoRA MoE-LoRA MoA

FINANCE 7.8479 7.6623 7.5235
MEDICINE 9.5097 9.6510 8.4488
LEETCODE 1.9527 2.0087 1.9296
EXAM 3.1154 3.1455 2.9745
WEBGPT 1.7945 1.8080 1.7927
GPT4TOOLS 2.2525 2.2524 2.2123
COT 2.8126 2.9205 2.5910
S.O. 2.8169 2.8801 2.8968

Average 4.0128 4.0411 3.7962

Table 8: The test perplexity of corresponding LoRA
module in different models on each task dataset.

Impact of Different Initialization Methods To
evaluate the effectiveness of various LoRA ini-

tialization methods, we present the MoE-LoRA
(naive) approach. In contrast to MoE-LoRA, the
LoRA modules in the naive variant are initial-
ized randomly. This approach leverages the com-
plete dataset from all domains, leading to a signif-
icant increase in total training duration. However,
this approach proves to be highly inefficient when
we require customization of different capability
combinations. Moreover, the comparative analysis
presented in Table 7 demonstrates that both meth-
ods yield comparable results across eight tasks.
Therefore, conducting further training on the ini-
tial multi-domain LoRA parameters emerges as a
highly efficient method.

4.6 Case Study
Figure 4 shows the comparison of the outputs
of different models on a specific reasoning ques-
tion. From the above results, only the MoA cor-
rectly understands the multiple relationships in the
query and predicts the right answer, while other
approaches are slightly less capable of reasoning.
Furthermore, the MoA is superior to the single-
LoRA, which also illustrates the advantages of our
multitask fine-tuning. This approach can not only
avoid the interference between different tasks, but
also further improve the performance on a single
task, so it has a great application prospect.

5 Conclusions

We introduce MoA architecture, which provide an
efficient multi-task fine-tuning method for LLM,
addressing interference among tasks and train-
ing instabilities. Each LoRA model can be iter-
ated individually to quickly adapt to new domains.
Meanwhile, MoA uses routing strategy to flexi-
bly select the appropriate LoRA expert to solve
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the problem. It can arbitrarily combine multiple
domain-specific LoRA modules to implement a
LLM with multiple specific capabilities. Future
work may focus on how to flexibility add or re-
move LoRA modules with unsupervised learning,
optimize the current routing algorithm, or reduce
the scale of training data in domain specialization
of LLMs.
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API is as follows:
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Your task is to score the accuracy of the user’s an-
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the reference answer.
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points from the reference answer and has ad-
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answer and has completely failed to address the
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ence answer and has correctly and completely ad-
dressed the questioner’s question.
Example: Questioner’s question: [query] User’s
answer: [llm_answer] Reference answer: [fact]
Evaluation result (score only):
Accuracy (0-100): """

where "[query]" represents user input,
"[llm_answer]" denotes the output of the MoA
model, and "[fact]" stands for the standard answer
provided by the dataset.
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