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Abstract
Due to the rapid growth of publications varying in quality, there exists a pressing need to help scientists digest and
evaluate relevant papers, thereby facilitating scientific discovery. This creates a number of urgent questions; however,
computer-human collaboration in the scientific paper lifecycle is still in the exploratory stage and lacks a unified
framework for analyzing the relevant tasks. Additionally, with the recent significant success of large language models
(LLMs), they have increasingly played an important role in academic writing. In this cutting-edge tutorial, we aim to
provide an all-encompassing overview of the paper lifecycle, detailing how machines can augment every stage of the
research process for the scientist, including scientific literature understanding, experiment development, manuscript
draft writing, and finally draft evaluation. This tutorial is devised for researchers interested in this rapidly-developing
field of NLP-augmented paper writing. The tutorial will also feature a session of hands-on exercises during which
participants can guide machines in generating ideas and automatically composing key paper elements. Furthermore,
we will address current challenges, explore future directions, and discuss potential ethical issues. A toolkit designed
for human-computer collaboration throughout the paper lifecycle will also be made publically available. The tutorial
materials are online at https://sites.google.com/view/coling2024-paper-lifecycle/.
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1. Introduction

Scientists are experiencing information over-
load (Landhuis, 2016) due to the rapid growth of
scientific literature. From March 13, 2020, to June
2, 2022, during the COVID-19 pandemic, more than
a million articles related to the coronavirus were
published (Wang et al., 2020a). However, scientists
peruse only about 300 papers annually (Van No-
orden, 2014). Simply put, when writing new arti-
cles, scientists cannot review all related papers.
Beyond this, another major obstacle is the qual-
ity of the papers. While many research articles,
especially preprints, provide new perspectives for
researchers, they also duplicate findings, spread
misinformation, and show disagreements among
themselves (Wang et al., 2021b). This can cause
a seemingly paradoxical increase of misinforma-
tion in scientific dissemination as the number of
papers increases (Casigliani et al., 2020). Finally,
field-specific language can be a barrier to scien-
tific communication (Han et al., 2018; Lucy et al.,
2023). For example, Glasziou et al. (2020) shows
that collaboration and communication for research
were extremely limited during the early stage of
COVID-19, causing massive waste in research.

To address these pressing issues, researchers
are developing AI methods to mitigate distorted
scientific dissemination, generate new research di-
rections, and ultimately draft papers. The recent
dramatic advances in large language models raise

the tantalizing prospect that such a capability is
within reach. For example, researchers have tested
ChatGPT (OpenAI, 2023) in writing essays (Stokel-
Walker, 2022), research papers (Conroy, 2023c),
or even grant applications (Park, 2023). Accord-
ing to a Nature postdoc survey (Nordling, 2023),
31% of respondents use AI chatbots in their work.
Despite such popularity, fundamental challenges
remain for this vision to materialize. Even with the
assistance of search engines, LLMs sometimes
generate fake references with incorrect metadata
or cite papers that do not exist (Conroy, 2023b).
Additionally, LLMs tend to generate papers with
extensive plagiarism (Anderson et al., 2023) and
inaccurate results (Hosseini et al., 2023).

To address those challenges, we will explore the
following questions in this tutorial:

• Why do we care about AI-assisted literature
review?

• How can humans leverage computers to eval-
uate the quality of scientific papers?

• How can AI facilitate new scientific ideas?
• How can we address the ethical issue of large

language models in the paper lifecycle?
Specifically, we will offer a comprehensive intro-

duction to recent techniques for a series of tasks
involved in the paper lifecycle. To begin with, we
will divide the paper lifecycle into four parts: the
scientific literature review, hypothesis generation
and experiments, paper drafting, and paper evalu-
ation. Furthermore, we will engage the audience
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in a hands-on Google Colab project to write and
evaluate a new paper draft assisted by LLMs. We
will also concurrently discuss ethical concerns in
the field throughout the tutorial and include a spe-
cific section for ethical concerns. Finally, we will
discuss the remaining challenges and future direc-
tions for the AI-assisted scientific paper lifecycle.
We will construct a toolkit and related papers for
the AI-assisted scientific paper lifecycle on GitHub.

2. Target Audience

The tutorial will be accessible to all NLP re-
searchers who wish to develop NLP methods for
the scientific paper lifecycle. While no specific back-
ground knowledge is required, having a basic un-
derstanding of pretrained language models, graph
neural networks, and other basic deep learning
technologies would be helpful. We expect around
50 to 100 participants based on the popularity.

3. Outline – The Paper Lifecycle [210]

3.1. Background and Motivation [15]
We will begin the tutorial with a comprehensive
overview of the scientific paper lifecycle by show-
casing various applications in accelerating scientific
discovery (Gil, 2022; Birhane et al., 2023), includ-
ing scientific literature review, scientific hypothesis
generation, experiment development, paper draft
generation, and draft evaluation. Specifically, we
will focus on the recent trend of applying LLMs in
academic writing, briefly discussing the benefits
and potential ethical concerns of this approach.

3.2. Scientific Literature Review [40]
Scientific Knowledge Base Construction [20]
We will introduce scientific LLMs, which usually fo-
cus on domain-adaptive pre-training (Phan et al.,
2021; Scao et al., 2022; Hong et al., 2023). Work-
ing with these general model architectures as tools,
we will describe why knowledge graphs are still nec-
essary in the LLM era by providing cases where
LLMs fail due to a lack of structured knowledge.
Then, we will focus on how various scientific infor-
mation extraction (IE) tasks are formulated (Hou
et al., 2019; Cohan et al., 2019; Jain et al., 2020;
Cattan et al., 2021; Panapitiya et al., 2021; Shen
et al., 2022; Song et al., 2023). Finally, we will dis-
cuss how researchers can improve the knowledge
base quality and utilize those tools to enhance the
paper reading experience (Fok et al., 2023).

Retrieving Relevant Information [20] Given the
exponential growth of papers and the language bar-
rier between different disciplines, scientists need

effective ways to retrieve relevant papers. Specifi-
cally, we will provide real-world examples of infor-
mation retrieval (IR) in the Covid-19 (Wang et al.,
2020a). Then, we will comprehensively introduce
the tasks in scientific information retrieval. Further,
we will cover existing methods and applications of
scientific information retrieval by categorizing them
into four major types, including scientific paper re-
trieval (Hongwimol et al., 2021), paper relationship
discovery (Luu et al., 2021), scientific evidence
extraction (Li et al., 2021), and scientific dataset
recommendation (Viswanathan et al., 2023). Fi-
nally, we will discuss how information retrieval can
be used for downstream tasks related to the paper
lifecycle, including scientific idea discovery (Hope
et al., 2020), and scientific fact-checking (Wang
et al., 2023). We will also discuss the potential
risks of incorrect information retrieval results.

3.3. Hypothesis Generation and
Experiments [25]

Generating Research Directions [20] Since we
have built the knowledge base and retrieved rele-
vant papers based on certain topics, we will then
present automatic scientific hypotheses generation,
the goal of which is to suggest potential research
directions for researchers. We will start by showing
drug repurposing for COVID-19 as a real-world ap-
plication of scientific hypothesis generation (Hope
et al., 2020; Zhang et al., 2021a; Wang et al.,
2021b). We will then give an overview of literature-
based research direction discovery (Henry and
McInnes, 2017; Hope et al., 2023). After that, we
will show how to effectively utilize existing literature
and a knowledge base to discover new scientific
directions (Wang et al., 2019; Krenn et al., 2023).
Lastly, we will discuss the ethical considerations
for scientific hypothesis discovery, including usage
requirements, potential risks, and system perfor-
mance limitations.

LLMs as Experimental Agents [5] In this para-
graph, we will discuss several real-world applica-
tions of using LLMs for experimental agents, includ-
ing experimental planning and scientific reason-
ing techniques. By integrating external knowledge
bases and domain-specific tools, LLMs can help
experts by formulating synthesis procedures (Bran
et al., 2023), editing drugs (Liu et al., 2023), analyz-
ing prediction results (Kumar et al., 2023), or even
automating experiments (Wierenga et al., 2023).
Currently, this direction remains highly exploratory.

3.4. Hands-on Paper Draft Assistant [50]
We will lead a hands-on exercise session using
Google Colab, an important component of our tu-
torial. We will start by providing attendees with
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a group of seed terms as starting topics and
their background knowledge (i.e., background sen-
tences, knowledge graphs, and citation networks).
The goal of this practice is first to generate new re-
search ideas about these seed terms and finally to
generate key elements of a paper, including a title,
an abstract, and a related work section for these
topics. Every attendee will initially brainstorm the
most effective strategies to generate new hypothe-
ses from the given input. They will later design a
pipeline to write key elements of the paper, given
the generated hypotheses and background knowl-
edge. We will also ask participants to evaluate
the generation quality from multiple perspectives
including automatic and human evaluation.

Because writing code from scratch is time-
consuming, we will let participants choose from
pre-installed state-of-the-art hypotheses and paper
generation frameworks. We will also provide them
with prepaid accounts and corresponding datasets.
By the end of this session, audiences will under-
stand how to build systems for hypothesis gener-
ation and paper writing, be familiar with methods
prevalent in the realm of automatic scientific pa-
per writing, and know evaluation methods for paper
generation. We will release a toolkit on GitHub.

3.5. Drafting a Paper [20]
In this part, we will divide the process of scien-
tific paper writing into several components. We will
first review available related work generation frame-
works which utilize pretrained language models and
graph neural networks (Lu et al., 2020; Ge et al.,
2021). Next, we will dive into a more challenging
aspect of paper writing: generating paper abstracts
based on titles and knowledge graphs (Koncel-
Kedziorski et al., 2019; Wang et al., 2019). We
will also explore the generation of other paper com-
ponents, including claim generation (Wright et al.,
2022), definition generation (August et al., 2022),
table captioning (Chen et al., 2021), and figure cap-
tioning (Hsu et al., 2021). Lastly, we will discuss
human-AI collaborative writing (Lee et al., 2022).

3.6. Paper Review and Ethics (45)
Automatic Scientific Reviewing [15] An impor-
tant step in the process of scientific writing is evalu-
ating paper quality to prevent distorted scientific dis-
semination. Due to the rapid growth in the number
of paper submissions, the quality of peer reviews
has become a widely discussed topic, as shown in
Section 5.3 of Rogers et al. (2023). Therefore, we
will present an automatic scientific review assistant
to alleviate this issue. We will first demonstrate cur-
rent progress in automatic scientific review (Yuan
et al., 2022). We will then divide the scientific re-
view process into two tasks: peer-review score pre-

diction (Kang et al., 2018) and review comment
generation (Wang et al., 2020b). We will also fo-
cus on knowledge-guided review score prediction
and review comment generation (Yuan and Liu,
2022). Finally, we will discuss automatic peer re-
view in the era of LLMs (Liu and Shah, 2023; Zeng
et al., 2023), which includes error detection, check-
list verification, paper recommendation, and corpus
comparison (Zhong et al., 2023).

Scientific Fact-Checking [15] We will start this
section by introducing the danger of misinforma-
tion in scientific publications during the COVID-
19 pandemic (Nelson et al., 2020). Additionally,
language models tend to generate non-factual
content (Maynez et al., 2020). We will also out-
line the importance of scientific fact-checking and
highlight its difference from general fact-checking.
Then, we will cover current scientific fact-checking
datasets (Wadden et al., 2020; Sarrouti et al., 2021)
and potential approaches (Zhang et al., 2021b; Yu
et al., 2022) for this task. Finally, we will focus
on the existing papers on human-centered fact-
checking (Glockner et al., 2022; Juneja and Mitra,
2022) and try to adapt them to the scientific domain.

Ethics Concerns in the LLM Era [15] We will re-
cap the increasing trend of using LLMs in academic
writing. We will discuss the benefits of LLMs for
scholarly publishing, including performing straight-
forward but time-consuming tasks (Conroy, 2023c)
and improving equity in science (Lund et al., 2023).
We will then address its risks and ethical concerns
by showing a paper (Ayache and Omand, 2022)
generated by GPT3 (Brown et al., 2020) as an ex-
ample. Based on that paper, we will highlight po-
tential issues, including incorrect reference (Con-
roy, 2023b), extensive plagiarism (Anderson et al.,
2023), accuracy concerns (Hosseini et al., 2023),
and equity concerns due to its subscription fee.
Further, we will show the current challenges in AI-
generated research paper detection (Gao et al.,
2023). We will also include potential solutions for
detecting AI-generated text (Crothers et al., 2023),
such as watermarking LLMs (Kirchenbauer et al.,
2023), writing style analysis (Ma et al., 2023).

3.7. Open Questions [15]
At the end of the tutorial, we will first discuss recent
exploratory work. We will discuss making scientific
ideas more accessible to the general public with
text style transfer (Dangovski et al., 2021; Gold-
sack et al., 2022; Fatima and Strube, 2023). We
will conclude the tutorial by presenting the remain-
ing challenges and future directions, including 1)
multimodal analysis of formulas, tables, figures,
and citation networks, 2) multimodal scientific hy-
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pothesis generation, and 3) automatic verification
of the new hypothesis.

4. Diversity Considerations

The methods introduced in this tutorial can help
mitigate the language barrier in interdisciplinary
science communication. We will cover a broad
diversity of methods and applications in different
domains. The methods we introduced are mostly
domain/language-agnostic. Therefore, they can
apply to different domains with various languages.
We estimate that only 15-20% of the work will in-
volve one of the four presenters. The papers we
discussed in the tutorial are produced by authors
from a variety of backgrounds. Our diverse tuto-
rial team represents two universities (UIUC and
HUJI) and originates from three geographically dis-
tant countries (across China, Israel, and the U.S.).
Their seniority varies, ranging from junior/senior
Ph.D. students to assistant/full professors, and the
team includes a female researcher. Our presenters
will promote our tutorial on social media to help
diversify our audience participation.

5. Reading List

• Related Tutorials (Jiang and Shang, 2020;
Chen et al., 2022; Asai et al., 2023)

• General Guideline (Gil, 2022; Yuan et al., 2022;
Birhane et al., 2023; Lund et al., 2023)

• Survey Papers (Li and Ouyang, 2022; Vladika
and Matthes, 2023; Hope et al., 2023)

• Scientific IE (Luan et al., 2018; Jain et al., 2020;
Shen et al., 2022; Song et al., 2023)

• Scientific IR (Wang et al., 2020c)
• Review Generation (Yuan and Liu, 2022)
• Hypothesis Generation (Krenn et al., 2023)
• Paper Draft Generation(Wang et al., 2021a)

6. Presenters

Qingyun Wang is a Ph.D. student in the Com-
puter Science Department at UIUC. His research
lies in controllable knowledge-driven natural lan-
guage generation, focusing on NLP for scientific
discovery. He served as a PC member for multiple
conferences including ICML, ACL, ICLR, NeurIPS,
etc. He previously entered the finalist of the first
Alexa Prize competition. He received the NAACL-
HLT 2021 Best Demo Reward. He has experience
presenting a tutorial at EMNLP 2021.

Carl Edwards is a Ph.D. student in the Computer
Science Department at UIUC. Broadly, he is in-
terested in information extraction, information re-
trieval, text mining, representation learning, and

multimodality. Particularly, he is interested in ap-
plying these to the scientific domain to accelerate
scientific discovery. His current work focuses on
integrating natural language and molecules, espe-
cially using multimodal representations.

Heng Ji is a professor at the Computer Science
Department of UIUC, and Amazon Scholar. She
is a leading expert on multimodal multilingual in-
formation extraction. She has coordinated the
NIST TAC Knowledge Base Population task since
2010. She has served as the PC Co-Chair of many
conferences including NAACL-HLT2018 and AACL-
IJCNLP2022 and has presented many tutorials.
She is elected as NAACL secretary 2020-2023.
Her research interests broadly cover information
extraction and NLP for Science, particularly in lever-
aging NLP for drug discovery.

Tom Hope is an assistant professor at the School
of Computer Science and Engineering of HUJI, and
a research scientist at AI2. He develops artificial
intelligence methods that augment and scale scien-
tific knowledge discovery by harnessing vast repos-
itories of scientific knowledge. His work has re-
ceived four best paper awards, appeared in top
venues, and received coverage from Nature and
Science. He was awarded the 2022 Azrieli Early
Career Faculty Fellowship, and was a member of
the KDD 2020 Best Paper Selection Committee.

7. Other Tutorial Information

All tutorial materials are publicly available
at https://sites.google.com/view/
coling2024-paper-lifecycle/.

8. Ethics Statement

The methods we introduce in the tutorial aim to pro-
vide investigative leads for a scientific domain. The
final results are not intended to be used without
human review. We emphasize that the tools intro-
duced in tutorials are designed to assist human sci-
entists. The identified research directions and the
process should be evaluated by trained researchers
to ensure ethical outcomes. Because many meth-
ods are built on top of pretrained large language
models, those systems may exhibit bias due to
their pretraining dataset. This tutorial also provides
opportunities to discuss the ethical considerations
when designing and using those methods and pro-
vides a specific section to discuss ethical consid-
erations related to LLMs. Most training sets for
these methods are written in English, which might
alienate readers historically underrepresented in
the NLP domain.

https://sites.google.com/view/coling2024-paper-lifecycle/
https://sites.google.com/view/coling2024-paper-lifecycle/
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