Navigating the Modern Evaluation Landscape: Considerations in Benchmarks and Frameworks for Large Language Models (LLMs)

Leshem Choshen*, Ariel Gera†, Yotam Perlitz†, Michal Shmueli-Scheuer†, Gabriel Stanovsky⋄
*MIT, †IBM Research, ⋄The Hebrew University of Jerusalem

Abstract

General-Purpose language models have changed the world of natural language processing, if not the world itself. The evaluation of such versatile models, while supposedly similar to evaluation of generation models before them, in fact presents a host of new evaluation challenges and opportunities. This tutorial welcomes people from diverse backgrounds and assumes little familiarity with metrics, datasets, prompts and benchmarks. It will lay the foundations and explain the basics and their importance, while touching on the major points and breakthroughs of the recent era of evaluation. We will contrast new to old approaches, from evaluating on multi-task benchmarks rather than on dedicated datasets to efficiency constraints, and from testing stability and prompts on in-context learning to using the models themselves as evaluation metrics. Finally, we will present a host of open research questions in the field of robust, efficient, and reliable evaluation.

Keywords: Language models, Benchmarks, efficient evaluation, language model as metrics,

1. Tutorial Description - Introduction

1.1. Background and Goals

Evaluation benchmarks have been a cornerstone of machine learning progress for years now. However, the introduction of pretrained models has profoundly altered the way benchmarks are used. Instead of focused questions, benchmarks now require assessing a vast and general set of abilities, for which diverse samples are collected (Liang et al., 2022; Gao et al., 2021). This is a first of many changes that are transforming the field of model evaluation, and that entail increasingly complex evaluation endeavours, compared to traditional single-task evaluation efforts.

On the other hand, the new era offers advantages in evaluation, requiring less data for training and better, flexible metrics. Evaluation is no longer done through fine-tuning, i.e. training on a train set for every task to be evaluated, but relies entirely on zero-shot or in-context learning. In that manner, instead of supplying training, the benchmark is a test set only. Another advantage of current models is that they can serve to evaluate other models, following the assumption that error detection is easier than generation. This approach offers a way to test answers in areas where it was hardly possible before.

With all of those changes, also comes great compute. Evaluating on a broad range of datasets, with more models, and with long and complex tasks, all brought growing compute needs, sometimes more costly than the model pretraining (Biderman et al., 2023).

This tutorial aims to introduce the still relevant concepts of evaluation (e.g., evaluation goals or N-gram based reference metrics) and contrast those with the new and changing needs of the general models we employ today. Such needs include leveraging another language model as an evaluator, a language model based metric, taking inference costs into account, evaluating each model on a diverse set of tasks, evaluating on diverse prompts, and more.

A complementary goal of the tutorial is to provide a structured and organized view of LLMs’ benchmarking. Such a view is largely missing in the academic literature, where each paper typically addresses a specific problem in isolation, normally in an ad-hoc manner. This view is also missing from the practical solutions presented by the industry, where different decisions are taken without a proper explanation which might cause some vague or incomplete understanding by the community. We present a complete pipeline of LLMs benchmarking, and discuss decisions that need to be considered throughout the pipeline. We will also share our experience and lessons learned from evaluating LLMs. Finally, the tutorial will discuss future challenges of LLMs benchmarking.

1.2. Tutorial type

This is a cutting-edge tutorial that aims at bridging the gaps in this emerging field. The need for timely discussions of LLM benchmarking is ever more pressing in light of the rapid advancement in the field that has caused great shifts in benchmarking such as new evaluation paradigms (e.g., ICL), and ever growing benchmarks aiming to validate unprecedented amounts of new abilities. Specifically,
this tutorial differs from recent performance benchmarking tutorials (Coleman et al., 2019) that mainly deal with evaluations of training and inference performance for hardware, software, and services as opposed to our focus on quality. Others like (Boyd-Graber et al., 2022) focus on human evaluation and explainability of LLMs or NLG metrics (Khapra and Sai, 2021) which covers a small section of overall benchmarking considerations.

2. Target Audience

While the tutorial will present the current state of the art and cutting-edge research, it should accommodate entry-level audience. The tutorial assumes little to no knowledge about evaluation, merely expecting some understanding of what Language Models are currently capable of and why they are useful. Thus, the tutorial is the best fit for people who have worked on a specific aspect of evaluation, but are less familiar with the big picture, researchers who are new to evaluation, and researchers who are less familiar with new challenges specific to large language models, such as benchmarking across many datasets, evaluating in open-domain tasks and prompting.

3. Outline

Part 1: Introduction (35 min)

Part 1.1: Introduction to Benchmarking

- What are the goals of model evaluation?
- Benchmarking building blocks- task, dataset, and metric

Part 1.2: Introduction to LLM Benchmarking

- Models: what do we evaluate?
- What are the main challenges? or, why it is not trivial?
- Common and important tasks
- Measurements - automatic metrics and human evaluation
- Benchmarking paradigms - fine-tuning, zero shot learner, few shot leaner
- Other important hyperparameters, instructions, prompts matter
- Reviewing general benchmarks
- Reviewing specific downstream tasks
- How do objectives and considerations (what, when, and whom) affect benchmarking decisions?

Part 2: Framework for Benchmarking (10 min)

- What are the requirements from the framework?
- Open source frameworks (e.g., HELM, OpenAI Evals, LM-evaluation-harness)
- Business frameworks

Part 3: Metrics (45 min)

- Classic N-gram based metrics
- Language Model based metrics
- Reference-less Metrics
- Language models as evaluators
- Fine-grained and specialized metrics
- Challenge sets, perturbation and data-based metrics

Part 4: Prompts (45 min)

- The importance of prompts
 - Who writes the prompts? What goals do they serve?
- Overview of evaluation protocol for prompts
 - Typically, a single prompt is used to evaluate across models
- Prompt banks
- Different desiderata for different use-cases
 - LLM developers
 - Developers for targeted downstream applications
 - Developers of open-ended user-facing applications

Part 5: Efficient Benchmark Design (45 min)

- Benchmarks Objectives
- Benchmarks Compute (survey)
- Benchmark decisions, or, common ways to reduce compute (survey)
- What makes a good benchmark (validity, reliability)
- Best practices for compute reduction in LLM benchmarks

Part 6: Manual Evaluation Efforts (30 min)

- Is human evaluation being abandoned?
- The alignment paradigm
- LLM-Human feedback loops
4. **Diversity Considerations**

The tutorial promotes a variety of topics related to diversity and fairness including efficient benchmarking to enable fair evaluation for low-resource groups, and reducing energy consumption. In addition, some of the topics are directly related to increasing transparency around model evaluation. The presenters are diverse in terms of gender, age, background, location and affiliation.

5. **Reading List**

1. Surveys on evaluation of LLMs (Chang et al., 2023; Ziyu et al., 2023; Gehrmann et al., 2023)
2. Pre-training paradigms (Min et al., 2023)
3. Current benchmarks: HELM (Liang et al., 2022), big-bench (Srivastava et al., 2022), LM-evaluation-harness (Gao et al., 2021)
4. Prompts: creating paraphrases (Lester et al., 2021; Gonen et al., 2022; Honovich et al., 2022), robustness to paraphrases (Gu et al., 2022; Sun et al., 2023; Mizrahi et al., 2024)
5. Metrics: survey (Sai et al., 2022), models as evaluators (Zheng et al., 2023)
6. Efficient-benchmarking: (Perlitz et al., 2023a; Vivek et al., 2023; Liang et al., 2022),
7. Manual Evaluation: survey (Bojic et al., 2023), reproducibility (Belz et al., 2023)

6. **Presenters**

Leshem Choshen

leshem.choshen@mail.huji.ac.il

Leshem Choshen is a postdoctoral researcher at MIT/IBM, aiming to collaboratively pretrain through model recycling (Don-Yehiya et al., 2022b; Yadav et al., 2023), efficient evaluation (Choshen et al., 2022b; Perlitz et al., 2023a), and manageable pretraining research (e.g., co-organizing the babyLM shared task (Warstadt et al., 2023)). Before leading a small research group at IBM, he received the postdoctoral Rothschild and Fulbright fellowships as well as IAAI and Blavatnik best Ph.D. awards. With broad NLP and ML interests, he also worked on Reinforcement Learning, and Understanding of how neural networks learn (Choshen et al., 2022a; Din et al., 2023), with a specific interest in evaluation (Choshen and Abend, 2019; Choshen et al., 2020), evaluation of evaluation (Choshen and Abend, 2018b,a), reference-less metrics (Choshen and Abend, 2018c; Honovich et al., 2021), quality estimation (Don-Yehiya et al., 2022a) and related topics. In parallel, he participated in Project Debater, creating a machine that could hold a formal debate, ending in a Nature cover and live debate (Slonim et al., 2021).

Ariel Gera

ariel.gera1@ibm.com

Ariel is a research scientist at IBM Research AI, with diverse interests in both NLG and text classification. Ariel is currently pursuing research on utilizing the outputs of different model layers (Gera et al., 2023) and on efficient and reliable evaluation for NLG tasks. Following his research on argumentation (Bilu et al., 2019) as part of Project Debater (Slonim et al., 2021), he has worked on numerous threads related to training models with limited supervision. These include studies of active learning (Ein-Dor et al., 2020; Perlitz et al., 2023c), few-shot (Shnarch et al., 2022a) and zero-shot (Gera et al., 2022), as well as development of the Label Sleuth platform for building text classifiers with a human in the loop (Shnarch et al., 2022b). Ariel has an MSc in Cognitive Science from the Hebrew University, for psychological studies of emotion perception.

Yotam Perlitz

yotam.perlitz@ibm.com

Yotam Perlitz is an AI Research scientist at IBM Research AI, advocating for more transparent and efficient LLM benchmarks (Perlitz et al., 2023a; Bandel et al., 2024), factually correct Data-to-text generation (Perlitz et al., 2023b, 2022) and data-efficient LLM training (Gera et al., 2022; Perlitz et al., 2023c). Previously, Yotam had investigated coarse to fine methods for objects detection (Dana et al., 2021) as well as exotic transmission phenomena through various phases of matter (Perlitz and Michaeli, 2018) as part of his M.Sc at the Weizmann institute of Science.

Michal Shmueli-Scheuer

shmueli@il.ibm.com

Michal is a principal researcher in the Language and Retrieval research group in IBM Research AI. Her area of expertise is in the fields of NLG and NLP including data to text, conversational bots, summarization of scientific documents, and affective computing. Michal is leading the work of LLMs Evaluation in IBM. She has published in leading NLP and AI conferences and journals, including ACL, EMNLP, NAACL, AAAI, and IUI. She regularly reviews for top NLP and AI conferences. She was an organizer of the 1st and 2nd Scientific Document Processing (SDP) workshops at 2020 (EMNLP) and 2021 (COLING), and co-organized shared tasks for Scientific document summarization in those workshops. Michal received her PhD from the University of California, Irvine in 2009.
Gabriel Stanovsky

Gabriel Stanovsky is a senior lecturer (assistant professor) in the school of computer science and engineering at the Hebrew University of Jerusalem, and a research scientist at the Allen Institute for AI (AI2). He did his postdoctoral research at the University of Washington and AI2 in Seattle, working with Prof. Luke Zettlemoyer and Prof. Noah Smith, and his PhD with Prof. Ido Dagan at Bar-Ilan University. He is interested in developing natural language processing models which deal with real-world texts and help answer multi-disciplinary research questions, in archaeology, law, medicine, and more. His work has received awards at top-tier venues, including ACL, NAACL, and CoNLL, and recognition in popular journals such as Science and New Scientist, and The New York Times.

7. Ethics Statement

During the tutorial, we will emphasize the importance of being aware of and addressing biases in benchmarks and frameworks. We will advocate for transparency in benchmark creation and evaluation methodologies. In addition, we will acknowledge the environmental impact of large-scale models by discussing efficient benchmarking approaches. Finally, we will highlight the importance of community engagement and collaboration for the benefit of diverse perspectives and the benefit of science.

References

Mitesh M Khapra and Ananya B Sai. 2021. A tutorial on evaluation metrics used in natural language

Yotam Perlitz, Liat Ein-Dor, Dafna Sheinwald, Noam Slonim, and Michal Shmuelli-Scheuer. 2023b. Diversity enhanced table-to-text generation via type control.

Yotam Perlitz, Ariel Gera, Michal Shmuelli-Scheuer, Dafna Sheinwald, Noam Slonim, and Liat Ein-Dor. 2023c. Active learning for natural language generation.

