
LREC-COLING 2024 Tutorials, pages 33–41
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

33

Knowledge Editing for Large Language Models

Ningyu Zhang, Yunzhi Yao, Shumin Deng
Zhejiang University, National University of Singapore

zhangningyu@zju.edu.cn, yyztodd@zju.edu.cn, shumin@nus.edu.sg
Abstract

Even with their remarkable capabilities, Large Language Models (LLMs) like ChatGPT are not without challenges,
particularly in maintaining factual accuracy and logical consistency. A primary concern is the ability to efficiently
update these LLMs to rectify inaccuracies without undergoing comprehensive retraining or continuous training
processes, which can be resource-intensive and time-consuming. The ability to edit LLMs presents a promising
solution, allowing for modifications in specific areas of interest while preserving the model’s overall performance
across various tasks. This tutorial is designed to familiarize NLP researchers with the latest advancements and
emerging techniques in editing LLMs. Our goal is to offer a thorough and up-to-date review of state-of-the-art
methodologies, complemented by practical tools, and to highlight new avenues for research within the community. All
referenced resources are available at https://github.com/zjunlp/KnowledgeEditingPapers.
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1. Introduction

Large Language Models (LLMs) have demon-
strated impressive potential in generating text that
closely resembles human writing, as evidenced
by numerous studies. However, despite their ad-
vanced capabilities, models such as ChatGPT can
sometimes struggle to maintain factual accuracy
or logical coherence. There’s also the risk of them
generating content that could be considered harm-
ful or offensive, compounded by their inability to
recognize events occurring after their last training
update. Addressing these issues without resort-
ing to comprehensive retraining or ongoing train-
ing processes—both of which require substantial
resources and time—presents a significant chal-
lenge. In response, the concept of knowledge
editing for LLMs has emerged as a promising so-
lution. This approach offers an efficient means to
adjust the model’s behavior in targeted areas with-
out detrimentally affecting its performance across
other tasks.

In this tutorial, our goal is to familiarize re-
searchers with the latest advancements and emerg-
ing strategies in the realm of knowledge editing for
LLMs. We aim to provide a systematic and com-
prehensive overview of state-of-the-art methods,
enriched with practical tools, and to explore new
avenues of research for our audience. The ses-
sion will begin with an introduction to the tasks
associated with knowledge editing for LLMs, along-
side relevant evaluation metrics and benchmark
datasets. We will then progress to discussing a
range of knowledge editing methodologies, with a
particular emphasis on those that maintain the orig-
inal parameters of LLMs. These methods typically
adjust the model’s responses in specific instances
by integrating an auxiliary network that works in
tandem with the unmodified core model. The dis-

cussion will shift towards techniques that directly
modify the parameters of LLMs, targeting the ad-
justment of model parameters linked to undesirable
outputs. Throughout the tutorial, we aim to share in-
sights from various research communities involved
in knowledge editing, introduce open-source tools
such as EasyEdit1, and delve into both the chal-
lenges and opportunities presented by knowledge
editing for LLMs. This session seeks to provide
valuable knowledge to the community, underlining
potential issues and uncovering prospects in the
field of knowledge editing. The detailed schedule
and content structure of the tutorial are outlined in
the referenced schedule Table 1.

Our tutorial is grounded in the exploration of prin-
ciples that guide the encapsulation of knowledge
within pre-trained language models, drawing upon
a range of pivotal studies such as those by Geva
et al. (2021); Haviv et al. (2023); Hao et al. (2021);
Hernandez et al. (2023b); Yao et al. (2023a); Cao
et al. (2023b). These works provide foundational
insights into how language models store and pro-
cess information. The practice of knowledge edit-
ing, which includes the manipulation of a model’s
external knowledge, shares commonalities with
knowledge augmentation techniques. This is be-
cause updating a model’s stored knowledge es-
sentially involves infusing it with new, relevant in-
formation. Additionally, we view knowledge edit-
ing as a nuanced form of lifelong learning (Biesial-
ska et al., 2020) and unlearning (Wu et al., 2022;
Tarun et al., 2021), where models are designed
to dynamically incorporate and adjust new knowl-
edge, while also shedding outdated or incorrect
data. This approach is crucial for enhancing the
model’s relevance and accuracy over time. More-
over, by enabling models to discard harmful or toxic

1https://github.com/zjunlp/EasyEdit

https://github.com/zjunlp/KnowledgeEditingPapers
https://github.com/zjunlp/EasyEdit
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information, knowledge editing presents a viable
strategy for addressing the security and privacy
challenges that accompany the use of Large Lan-
guage Models (Geva et al., 2022). In our tutorial,
we will explore these dimensions in depth, offering
insights into how knowledge editing contributes to
the ongoing evolution of language models. We will
also suggest possible future directions for research
in this area. Attendees will find all related materials
and slides available at https://github.com/
zjunlp/KnowledgeEditingPapers, ensuring
they have access to a comprehensive set of re-
sources to further their understanding and applica-
tion of knowledge editing techniques.

2. Target Audience

This tutorial is designed to appeal to a broad spec-
trum of participants, including academics like re-
searchers and students, as well as industry pro-
fessionals engaged in the fields of Natural Lan-
guage Processing (NLP) and Artificial Intelligence
(AI). It is structured to be accessible and informa-
tive for anyone with a basic understanding of NLP
and AI principles. Furthermore, participants with
a foundational knowledge of neural networks will
find the content particularly advantageous. For
those already familiar with LLMs and techniques
for parameter-efficient tuning, this tutorial will signif-
icantly enrich their learning experience, providing
deeper insights and practical applications in these
areas.

3. Outline

The tutorial mainly consists of the following parts,
as shown in Table 1.

1. Introduction (15 minutes)
• Background

• Why knowledge editing for LLMs?

2. Preliminaries (15 minutes)
• Pre-trained language models

• Definition of knowledge editing for LLMs

• Metrics and benchmark datasets

3. Knowledge Editing for LLMs
• Knowledge editing methods of preserving

LLMs’ parameters (40 minutes)

Coffee Break (30 minutes)

• Knowledge editing methods of modifying
LLMs’ Parameters (40 minutes)

4. Extensions (40 minutes)

• Knowledge editing for multilingual, multimodal
LLMs

• Knowledge fairness, bias and security issues

5. Open-sourced Tools (30 minutes)

6. Discussion on Main Issues & Opportunities
(30 minutes)

4. Suggested Duration

Half day (4 hours, including 30-minute break)

5. History

The presenters have organized the following tutori-
als:

• AACL 20232: Editing Large Language Models
(3-hour tutorial)

• IJCAI 20233: Open-Environment Knowledge
Graph Construction and Reasoning: Chal-
lenges, Approaches, and Opportunities (3-
hour tutorial)

• AACL 20224: Efficient and Robust Knowledge
Graph Construction (3-hour tutorial)

• The 18th Reasoning Web Summer School5:
Cross-Modal Knowledge Discovery, Inference,
and Challenges (3-hour tutorial)

6. Diversity Considerations

The presenting team comprises individuals from
two academic institutions, featuring a diverse mix
of roles such as professors, a research fellow, and
a Ph.D. candidate. Among the four speakers, one
is a woman, highlighting the team’s commitment to
inclusivity and diversity in academic representation.

7. Estimated Number of Participants

LLMs are increasingly being applied across a wide
array of tasks. Given the need for frequent post-
training adjustments to correct errors and mitigate

2Resources will be available at https://github.
com/zjunlp/KnowledgeEditingPapers.

3https://openkg-tutorial.github.io/.
4https://github.com/NLP-Tutorials/

AACL-IJCNLP2022-KGC-Tutorial.
5https://2022.declarativeai.net/

events/reasoning-web/rw-lectures.

https://github.com/zjunlp/KnowledgeEditingPapers
https://github.com/zjunlp/KnowledgeEditingPapers
https://github.com/zjunlp/KnowledgeEditingPapers
https://github.com/zjunlp/KnowledgeEditingPapers
https://openkg-tutorial.github.io/
https://github.com/NLP-Tutorials/AACL-IJCNLP2022-KGC-Tutorial
https://github.com/NLP-Tutorials/AACL-IJCNLP2022-KGC-Tutorial
https://2022.declarativeai.net/events/reasoning-web/rw-lectures
https://2022.declarativeai.net/events/reasoning-web/rw-lectures
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Presentation Topic Presenter Time
Introduction Ningyu Zhang 15min
Preliminaries Ningyu Zhang 15min

Methods for Preserve LLMs’ Parameters Yunzhi Yao 40min
Coffee break - 30min

Methods for Modify LLMs’ Parameters Yunzhi Yao 40min
Extensions Shumin Deng 40min

Open-sourced Tools Yunzhi Yao 30min
Discussion on Main Issues & Opportunities Ningyu Zhang 30min

Table 1: Tutorial Schedule

undesirable behaviors in many of these applica-
tions, there is a rising interest in methods for effi-
cient and immediate model modifications. Con-
sequently, we expect this tutorial to attract an
audience of more than 100 attendees, reflecting
the growing focus on adaptable and flexible ap-
proaches to enhancing LLM performance.

8. Ethical Considerations

Knowledge editing involves techniques designed to
modify the behavior of pre-trained models. It’s cru-
cial, however, to acknowledge the potential risks: if
misapplied, knowledge editing could cause models
to produce harmful or inappropriate content. Thus,
prioritizing safe and responsible practices in the ap-
plication of knowledge editing is imperative. Ethical
guidelines should steer the use of these techniques,
accompanied by robust safeguards to deter misuse
and prevent the generation of damaging outcomes.

9. Reading list

• “A Comprehensive Study of Knowledge Editing
for Large Language Models”, (Zhang et al.,
2024)

• “Editing Large Language Models: Problems,
Methods, and Opportunities”, (Yao et al.,
2023b)

• “Detoxifying Large Language Models via
Knowledge Editing”, (Wang et al., 2024a)

• “Editing Conceptual Knowledge for Large Lan-
guage Models”, (Wang et al., 2024b)

• “Evaluating the Ripple Effects of Knowledge
Editing in Language Models”, (Cohen et al.,
2023a)

• “Can We Edit Multimodal Large Language
Models?”, (Cheng et al., 2023a)

• “Unveiling the Pitfalls of Knowledge Editing for
Large Language Models”, (Li et al., 2023)

• “Editing Personality for LLMs”, (Mao et al.,
2023)

• “Editing Language Model-based Knowledge
Graph Embeddings”, (Cheng et al., 2023b)

• “Memory-Based Model Editing at Scale”,
(Mitchell et al., 2022c)

• “Calibrating Factual Knowledge in Pretrained
Language Models”, (Dong et al., 2022)

• “Transformer-Patcher: One Mistake worth One
Neuron”, (Huang et al., 2023)

• “Can We Edit Factual Knowledge by In-Context
Learning?”, (Zheng et al., 2023)

• “Editing Factual Knowledge in Language Mod-
els”, (Cao et al., 2021)

• “Fast Model Editing at Scale”, (Mitchell et al.,
2022a)

• “Knowledge Neurons in Pretrained Transform-
ers”, (Dai et al., 2022a)

• “Locating and Editing Factual Associations in
GPT”, (Meng et al., 2022a)

• “Mass-Editing Memory in a Transformer”,
(Meng et al., 2023)

• “MQUAKE: Assessing Knowledge Editing in-
Language Models via Multi-Hop Questions”,
(Zhong et al., 2023)

• “Can LMs Learn New Entities from Descrip-
tions? Challenges in Propagating Injected
Knowledge”, (Gupta et al., 2023)

• “Detecting Edit Failures In Large Language
Models: An Improved Specificity Benchmark”,
(Hoelscher-Obermaier et al., 2023)

• “Editing Commonsense Knowledge in GPT”,
(Gupta et al., 2023)
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10. Presenters

Ningyu Zhang is an associate professor/doctoral
supervisor at Zhejiang University, leading the group
about KG and NLP technologies. He has super-
vised to construct a information extraction toolkit
named DeepKE6 (2.8K+ stars on Github). His
research interest include knowledge graph and
natural language processing. He has published
many papers in top international academic confer-
ences and journals such as Natural Machine Intel-
ligence, Nature Communications, NeurIPS, ICLR,
AAAI, IJCAI, WWW, KDD, SIGIR, ACL, ENNLP,
NAACL, and IEEE/ACM Transactions on Audio
Speech and Language. He has served as Area
Chair for ACL/EMNLP 2023, ARR Action Editor, Se-
nior Program Committee member for IJCAI 2023,
Program Committee member for EMNLP, NAACL,
NeurIPS, ICLR, ICML, WWW, SIGIR, KDD, AAAI,
and reviewer for TKDE, TKDD.

Email: zhangningyu@zju.edu.cn
Homepage: https://person.zju.edu.cn/

en/ningyu
Yunzhi Yao is a Ph.D candidate at at School

of Computer Science and Technology, Zhejiang
University. His research interests focus on Editing
Large Language Models and Knowledge-enhanced
Natural Language Processing. He has been re-
search intern at Microsoft Research Asia super-
vised by Shaohan Huang, and research intern at
Alibaba Group. He has published many papers in
ACL, EMNLP, NAACL, SIGIR. For tutorial experi-
ence, he has given talks at AI-TIME to deliver his
recent works. Moreover, he is the first author of the
paper “Editing Large Language Models: Prob-
lems, Methods, and Opportunities” and one of
the developers of the knowledge editing framework
EasyEdit, which is related to this tutorial.

Email: yyztodd@zju.edu.cn
Homepage: https://scholar.google.ch/

citations?user=nAagIwEAAAAJ
Shumin Deng is a research fellow at Depart-

ment of Computer Science, School of Computing
(SoC), National University of Singapore. She have
obtained her Ph.D. degree at School of Computer
Science and Technology, Zhejiang University. Her
research interests focus on Natural Language Pro-
cessing, Knowledge Graph, Information Extraction,
Neuro-Symbolic Reasoning and LLM Reasoning.
She has been awarded 2022 Outstanding Gradu-
ate of Zhejiang Province, China; 2020 Outstanding
Intern in Academic Cooperation of Alibaba Group.
She is a member of ACL, and a member of the
Youth Working Committee of the Chinese Informa-
tion Processing Society of China. She has serves
as a Research Session (Information Extraction)
Chair for EMNLP 2022, and a Publication Chair for

6https://github.com/zjunlp/DeepKE.

CoNLL 2023. She has been a Journal Reviewer
for many high-quality journals, such as TPAMI,
TASLP, TALLIP, WWWJ, ESWA, KBS and so on;
and serves as a Program Committee member for
NeurIPS, ICLR, ACL, EMNLP, EACL, AACL, WWW,
AAAI, IJCAI, CIKM and so on. She has constructed
a billion-scale Open Business Knowledge Graph
(OpenBG), and released a leaderboard7 which has
attracted thousands of teams and researchers.

Email: shumin@nus.edu.sg
Homepage: https://231sm.github.io/
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