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Abstract
In this half-day tutorial we will be giving an introductory overview to a number of recent applications of natural
language processing to a relatively underrepresented application domain: chemistry. Specifically, we will see
how neural language models (transformers) can be applied (oftentimes with near-human performance) to
chemical text mining, reaction extraction, or more importantly computational chemistry (forward and backward
synthesis of chemical compounds). At the same time, a number of gold standards for experimentation have
been made available to the research –academic and otherwise– community. Theoretical results will be, when-
ever possible, supported by system demonstrations in the form of Jupyter notebooks. This tutorial targets an
audience interested in bioinformatics and biomedical applications, but pre-supposes no advanced knowledge of either.
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Introduction
Overview Chemistry was for long a terra incog-
nita for natural language processing (NLP). While
strong overlap with computational and statistical
physics (in e.g., so-called computational chemistry)
gave rise to the application of many statistical mod-
els, methods derived from NLP have only reached
wide acceptance in the past twenty years (Sun
et al., 2011; Akhondi et al., 2015). The aim of
this tutorial is to provide a basic introduction to
this emerging field, and overview some of its latest
advances. Given its breath, we will focus on four
fundamental use cases.

Outline This tutorial will be organized as follows:

• Block 1. Basic chemical notions and tech-
niques.
50 minutes, followed by a 10 minute break.

• Block 2. Text mining in the chemistry domain.
50 minutes, followed by a 10 minute break.

• Block 3. Distributional models for (computa-
tional) chemistry.
50 minutes, followed by a 10 minute break.

• Block 4. Large language models, multimodal-
ity, applications.
50 minutes.

For an overview of the material to be discussed
in each block, please see below. The tutorial as-
sumes no prior knowledge, with the exception to
exposure to Python and natural language process-
ing. Knowledge of chemistry is beneficial but not
required.

Basic chemical notions and techniques In
chemistry, the primary objects of interest are chem-
ical compounds and reactions. A compound is a
complex structure composed of atoms and bonds.

Compounds are in turn the building blocks of reac-
tions, which are relations or events wherein multi-
ple compounds, a.k.a. reactants, are combined to
synthesise novel compounds a.k.a products.

While a number of manually curated public (e.g.,
PubChem or SureChemBL) and commercial (e.g.
Reaxys c© or SciFinder c©) chemical databases ex-
ist, most of the information about compounds and
reactions is reported first in chemical publications,
such as chemical patents and chemical journals.
Their volume being so big, NLP applications have
become critical in the curation and enrichment of
these databases (Sun et al., 2011). A number of
basic NLP tasks need to be solved for this to be
possible (Sun et al., 2011; Leaman et al., 2016).
(a) Texts need to be segmented and, crucially, tok-
enized. (b) Chemical entities need to be extracted,
and normalized or disambiguated against entity
identifiers in chemical databases. (c) Relations
need to be identified. This has motivated research
in this area, as well as the emergence of chemical
NLP benchmarks to train machine learning mod-
els, such as e.g. the CHEMDNER (Krallinger et al.,
2015) chemical named entity recognition corpus.

One particular challenge here is the syntax of vo-
cabulary of chemical text, specially, names. While
the key representation of a molecule (Sun et al.,
2011) is graphical (atoms being the vertexes, and
bonds the edges), a number of alternative nam-
ing conventions and textual (linear) serialization
formats exist (see Figure 2), such as: (a) Trivial
names –these are standard names for compounds.
(b) IUPAC names –these are semi-formal names
built with special characters. (c) SMILES strings
–these are linear representations of the graph ob-
tained by topologically ordering a spanning tree of
the graph. This traditionally made tokenization a
hard task, as traditional methods would break IU-
PAC names or SMILES (Akkasi et al., 2016). Also,
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Figure 1: US patent snippet with reaction anno-
tations (entities and events), in BRAT format (He
et al., 2021).

even with formal representations, some degree of
ambiguity seems unavoidable, stressing the need
chemical name normalization at all levels (Akhondi
et al., 2015).

Text mining in the chemistry domain An im-
portant contribution to this field in recent years
has been the ChEMU series of shared chemical
test mining tasks, organized within the CLEF 2020,
2021 and 2022 conference. In these shared tasks
a novel set of chemical NLP gold sets, each con-
stituted of 1,500 snippets of reaction texts (multi-
paragraph passages describing reactions) derived
from English chemical patents were made avail-
able for the research community, the main being:
(a) A chemical named entity recognition (NER) set,
with entities differentiated by the role they play in
reactions (He et al., 2021). (b) A event extraction
(EE) set, where individual reactions are annotated
as events (He et al., 2021). (c) An anaphora reso-
lution set, that resolves anaphors across reaction
texts (Fang et al., 2021). Figure 1 illustrates the
first two levels of annotations on a sample snip-
pet. Results from the shared tasks showed that
a wide variety of techniques, including symbolic,
heuristic-based text processing, can achieve good
results. At the same time, models derived from
the BERT family of neural language models can
achieve SOTA results on a par or higher than inter-
annotator agreement. See Table 1 for the first two
benchmarks.
Alongside this, there has also been progress on
related tasks such as chemical indexing (Sun et al.,
2011; Akhondi et al., 2019; Leaman et al., 2016),
where the goal is to identify the most relevant chem-
ical entities for indexing and search.

Distributional models for (computational)
chemistry Multiple analogies between chemical
compounds and natural or formal languages can
be drawn, in particular that, like a sentence, a
molecule can be understood as a (recursive)

Model NER (F1) EE (F1)
NextMove 89.1 89.7

PubMedBERT 94.7 92.0
MelaxTech 95.7 95.3

LG-AI 97.5 92.3

Table 1: Results on the ChEMU NER and EE
benchmarks (He et al., 2021; Jang et al., 2022).
The latter three are based on BERT resp. encoder-
only transformer models. NextMove’s methods are
on the other hard, based on more classical meth-
ods such as dependency parsing, grammars and
transducers.

Model Acc1 Acc2 Acc3
Dual-TF 55.3 66.7 73.0

Graph2SMILES 52.9 66.5 70.0
Chemformer 53.6 61.1 61.7

T5Chem 46.5 64.4 70.5

Table 2: SOTA (mid-2023) on USPTO-50k (Irwin
et al., 2022; Sun et al., 2021; Tetko et al., 2020;
Lu and Zhang, 2022a). Notice that two out of
four models are text-to-text transformers (encoder-
decoders).

composition of atomic units or “words”: base
compounds and atoms. Linearized representa-
tions of chemical molecules such as SMILES
strings make this analogy even more apparent
(see Figure 2). SMILES strings can be tokenized
(see Figure 2), and embeddings and similar
deep-learning molecular representations can thus
be successfully learnt via neural language models
(Tshitoyan et al., 2019). Such representations
can be as expressive (sometimes even more
expressive) than traditional cheminformatics
representations based on manually engineered
chemical and physical features of molecules.
In particular, chemical transformations such
as single-step retro-synthesis –predicting the
reactant(s)– or its dual, forward synthesis –
predicting the product(s)– can be modelled as
sequence-to-sequence problems, viz., translations
between the SMILES strings to the left and right of
the chemical equation symbol » (see Figure 3). It
can thus be solved using text-to-text transformer
models from the Bart or T5 families (?Irwin et al.,
2022; Lu and Zhang, 2022a). This is evident in
Table 2, that shows the current SOTA on the main
single-step chemical synthesis benchmark, the
USPTO-50k gold set. This is a manually curated
set of 50,000 reactions extracted from US chem-
istry patents. All models are deep learning mod-
els, with the first two based on the analysis of the
source graphical, 2-dimensional representations of
molecules, and the latter two, on neural language
models and reaction SMILES.

http://chemu.eng.unimelb.edu.au/
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SMILES CC[N+](C)(C)Cc1ccccc1Br
tokens CC[N+]( C[N+](C [N+](C)

(C)( C)(C )(C) (C)C
C)Cc )Cc1 Cc1c c1cc

1ccc cccc cccc ccc1 cc1Br

Figure 2: SMILES representation and tokeniza-
tion of “Bretylium" (a.k.a. “N-(2-Brombenzyl)-N,N-
dimethylethanaminium" in IUPAC notation) into 16
4-chargramms.

C.O=O.O=O » O=C=O.O.O

Figure 3: The combustion of methane represented
in (reaction) SMILES. Dots, viz, the character .,
are used as separators for the reactants, listed to
the left hand side of the reaction symbol », and the
products, listed to the right.

In fact, neural word embeddings, learnt from chem-
ical corpora, seem nowadays powerful enough
(Thorne and Akhondi, 2020) to learn representa-
tions of entities that correlate with molecular-based
representations (see Figure 4).

Large language models, multimodality, appli-
cations The current surge in large language

RDKit

Che
MU_W

2V

Pu
bM

ed
_W

2V

Drug
_W

2V

Mat2
Vec_

W2V

Che
MU_EL

Mo

Pu
bM

ed
_EL

Mo

RDKit

CheMU_W2V

PubMed_W2V

Drug_W2V

Mat2Vec_W2V

CheMU_ELMo

PubMed_ELMo

1 0.089 -0.0084 -0.063 0.22 0.11 -0.0011

0.089 1 0.72 0.62 0.67 0.69 0.68

-0.0084 0.72 1 0.66 0.58 0.55 0.59

-0.063 0.62 0.66 1 0.37 0.41 0.47

0.22 0.67 0.58 0.37 1 0.59 0.52

0.11 0.69 0.55 0.41 0.59 1 0.91

-0.0011 0.68 0.59 0.47 0.52 0.91 1

Embedding correlation (Pearson, p-value < 0.005)

Figure 4: Correlations between chemical (word)
embeddings (Thorne and Akhondi, 2020).

Figure 5: Asking GPT-4 (8,192-token input con-
text version) to concisely describe a synthesis plan
(sequence of reactions and reaction steps) for “N-
(2-Brombenzyl)-N,N-dimethylethanaminium". We
sampled with temperature t ≥ 0.7, likelihood p ≥
0.95 and a 800-token stop citerion.

models (LLMs), viz., decoder-only generative trans-
former models with billions of parameters and
trained over corpora comprising billions of words,
has also reached the chemical domain. Re-
searchers have demonstrated (Bran et al., 2023; ?)
that general-purpose models like Open-AI’s GPT-
3 and GPT-4, or scholarly LLMs such as Galac-
tica (Taylor et al., 2022) can be used as chemistry
and computational chemistry assistants, even if
chemistry-specific models (such as e.g. SMILES-
GPT (Adilov, 2021)) still underperform. Figure 5
shows that they can be used to suggest, e.g., reac-
tions and (even if not necessarily always factually
correct) synthesis procedures, potentially helping
drafting novel plans.
Another emerging field of chemical NLP research
is work on multi-modality. As seen earlier, it is pos-
sible to learn neural language models on chemical
texts and linearized representations of compounds
and reactions, and apply them to text mining and
computational chemistry tasks. However, not all
chemical information is conveyed textually. A sig-
nificant part is conveyed in images, structured in
tables, etc. Hence the need to learn wider, more
expressive representation spaces that e.g. en-
rich current spaces with physiochemical features
and other dimensions (Soares et al., 2023; Lu and
Zhang, 2022b).

Reading List and Tools
In this section we highlight the key literature point-
ers the audience should be aware of for a better
understanding of this tutorial. We also point at
some basic software tools. Readers are invited to
click on the hyper-links.

Key papers While all papers cited earlier are
useful, we suggest to start with (Sun et al., 2011),
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which covers well the problems in chemical text
mining, as well as approaches that precede deep
learning. Is also important to understand chemi-
cal representation formats. Regarding text mining,
we suggest (He et al., 2021) and (Lu and Zhang,
2022a) for distributional models. Lastly, (Bran et al.,
2023) for recent applications (large language mod-
els).

Key software tools The main open source soft-
ware tool used in the cheminformatics community
is perhaps RDkit, a Python library that we will
be using in our demos and Jupyter notebooks.
For a more extensive overview of all software
tools (including tools written in languages other
than Python), please check this GitHub reposi-
tory. It also contains links to predictive models
beyond NLP. These tools are sometimes essential
for (pre)processing chemical data.

Key models Regarding word embeddings, we
suggest to check out the ChELMo embeddings,
pre-trained on chemical patents (even if not
transformer-based) Regarding text mining models,
many are closed-source. We will provide some El-
sevier deep learning -based demonstration models
as part of this tutorial. An open source –if dated
and written in Java– starting point is ChemSpot
(based on conditional random fields and manual
features,). Regarding distributional models over
SMILES, we recommend T5Chem.

Key chemical NLP benchmarks While the pa-
pers cited mention multiple benchmarks, we sug-
gest to focus on the following four: (a) The chem-
ical NER BioSemantics corpus. (b) The chemi-
cal NER CHEMDNER corpus. (c) The ChEMU
benchmarks. (d) Lastly, the USPTO-50k collection
of chemical reactions, the most important public
benchmark for computational chemistry.

Presenters
Camilo Thorne (personal website; Google
Scholar) is currently Principal Data Scientist at
Elsevier. His work focuses on applying current
NLP SOTA (large language models and other
transformer-based NLP techniques) to the life sci-
ences domain, and in particular to chemistry. His
background spans both industry and academia.
Prior to Elsevier he worked as postdoctoral fellow
in biomedical NLP at the universities of Mannheim
and Stuttgart, Germany, and as computational lin-
guist at IBM, Italy. He holds a PhD in computer
science from the Free University of Bozen-Bolzano,
where he studied controlled natural languages and
semantic web formalisms. Last, but not least, he
holds extensive teaching and public speaking ex-
perience in his fields of interest.
Saber Akhondi (Google Scholar) is currently Se-
nior Director/Head of Data Science at Elsevier He

heads a group of 10+ data scientists, where he
applies NLP and machine learning techniques to
extract information useful for large commercial and
research communities in the life sciences. He has
extensive experience in the area of chemical text
mining, with multiple high impact publications, and
multiple international project coordination activities
(ChEMU, BioSemantics). Saber Akhondi holds a
PhD from Erasmus University Rotterdam, where
he developed novel methods for the detection, nor-
malization and indexing of chemical entities.

Diversity Considerations
This topic contributes to topic diversity by intro-
ducing an underrepresented application domain of
natural language processing (and machine learn-
ing): computational chemistry. It will be of partic-
ular interest to researchers in the biomedical and
bioinformatics domain, and more generally, to re-
searchers of cross-disciplinary life sciences and
data science backgrounds.

Other Information
Presenters This tutorial will be given by two per-
sons, who will alternate each other for the different
blocks.

Course infrastructure The presenters will try to
illustrate practically the methods described with
Jupyter notebooks whenever possible. Slides, note-
books and announcements will be distributed and
managed through a public GitHub repository (or a
public website) and Google Colab, accessible to
all participants. For the tutorial, we request only a
room sufficiently large for all registered attendants,
with good internet connection and a projector.

Ethics Statement
Methods will be demonstrated using datasets and
platforms that are freely accessible for research
purposes.
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