@inproceedings{bothwell-etal-2024-nostra,
title = "Nostra Domina at {E}va{L}atin 2024: Improving {L}atin Polarity Detection through Data Augmentation",
author = "Bothwell, Stephen and
Swenor, Abigail and
Chiang, David",
editor = "Sprugnoli, Rachele and
Passarotti, Marco",
booktitle = "Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) @ LREC-COLING-2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lt4hala-1.25",
pages = "215--222",
abstract = "This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the k-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-F1 score on the shared task{'}s test set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bothwell-etal-2024-nostra">
<titleInfo>
<title>Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Bothwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abigail</namePart>
<namePart type="family">Swenor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) @ LREC-COLING-2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the k-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-F1 score on the shared task’s test set.</abstract>
<identifier type="citekey">bothwell-etal-2024-nostra</identifier>
<location>
<url>https://aclanthology.org/2024.lt4hala-1.25</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>215</start>
<end>222</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation
%A Bothwell, Stephen
%A Swenor, Abigail
%A Chiang, David
%Y Sprugnoli, Rachele
%Y Passarotti, Marco
%S Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) @ LREC-COLING-2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F bothwell-etal-2024-nostra
%X This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the k-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-F1 score on the shared task’s test set.
%U https://aclanthology.org/2024.lt4hala-1.25
%P 215-222
Markdown (Informal)
[Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation](https://aclanthology.org/2024.lt4hala-1.25) (Bothwell et al., LT4HALA-WS 2024)
ACL