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Abstract
This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion
polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical
genres like poetry, we augmented the available data through automatic polarity annotation. We present
two methods for doing so on the basis of the k-means algorithm, and we employ a variety of Latin large
language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment represen-
tations. Our best approach achieved the second highest macro-averaged Macro-F1 score on the shared task’s test set.
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1. Introduction

Emotion polarity detection is a variant on the com-
mon NLP task of sentiment analysis. Usual applica-
tions of this task tend to be on reviews—for exam-
ple, about movies (Maas et al., 2011; Socher et al.,
2013) or products (Blitzer et al., 2007)—where pro-
viding an opinion is the author’s goal. Few works
have extended this task to less direct modalities of
sentiment, like poetry, and even fewer to ancient
languages, like Latin (Chen and Skiena, 2014; Mar-
ley, 2018; Sprugnoli et al., 2020, 2023). Thus, the
EvaLatin 2024 evaluation campaign’s take on this
task (Sprugnoli et al., 2024) tackles both an uncom-
mon genre and a low-resource environment.

Motivated by the lack of sentiment resources,
this work presents two methods for the automatic
annotation of data: polarity coordinate clustering,
a novel specialization on k-means clustering, and
Gaussian clustering. Furthermore, our work exam-
ines a variety of different Latin LLMs in a straightfor-
ward neural architecture through a hyperparameter
search to determine their efficacy on the emotion
polarity detection task. To our knowledge, we are
the first outside of the original authors to explicitly
apply some of these language models for Latin.1

After we introduce the small set of pre-existing
data for this task, we describe our clustering-based
annotation methods (Section 2.1) and their results
(Section 2.1.3). Then, we describe our neural ar-
chitecture (Section 3) and the procedure used for
model training and selection (Section 4.1). Finally,
we go over our results for this task and investigate
why our models performed as they did, with one
achieving the second best macro-averaged Macro-
F1 score on EvaLatin’s test set (Section 5).

1We make our data and code available at: https://
github.com/Mythologos/EvaLatin2024-NostraDomina.
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Figure 1: The polarity coordinate plane. Points
are all colored differently to represent their classes
and are labeled accordingly. The x-axis and y-axis
represent polarity and intensity, respectively.

2. Data

Very little data exists for sentiment analysis in
Latin. Until recently, only static representations of
sentiment were available in sentiment lexica. To
our knowledge, the first Latin sentiment lexicon
was one automatically transferred to Latin based
on English lexica and a large knowledge graph
(Chen and Skiena, 2014). This was followed by
two others. One was manually curated by a single
author based on Stoic values in a study on Cicero
(Marley, 2018). The other, called LatinAffectus, was
created by multiple Latin experts and organized
according to inter-annotator agreement (Sprugnoli
et al., 2020); its most recent version, LatinAffectus-
v4, was released for use in this shared task.

Following this, Sprugnoli et al. released the first
dataset for Latin sentiment analysis. This dataset,
having the same classes as our shared task, covers

https://github.com/Mythologos/EvaLatin2024-NostraDomina
https://github.com/Mythologos/EvaLatin2024-NostraDomina
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Dataset Class
Positive Negative Neutral Mixed

Odes 20 12 3 9

PC 10427 4114 57786 4178
Gaussian 33473 14333 16861 11838

Horace 20 55 8 15
Pontano 48 18 10 22
Seneca 7 81 2 13
Total 75 154 20 50

Table 1: Resource class distributions. The top,
middle, and bottom sections (broken up by pairs
of lines) concern pre-existing resources, new re-
sources, and EvaLatin test subsets (or the total set),
respectively. “PC” is Polarity Coordinate.

a selection of Horace’s Odes—a staple of classical
poetry. It contains 44 labeled sentences and has
the class distribution given in Table 1. Although this
dataset lays groundwork for future studies in Latin
sentiment analysis, it is not large enough to train a
traditional neural classifier. This is especially the
case for a genre which indirectly conveys opinions:
poetry frequently employs allusion (e.g., to contem-
porary circumstances) and rhetorical devices (e.g.,
metaphor, sarcasm) to make its points.

Given this lack of available training data, we in-
vestigate automatic annotation to approximate sen-
timent for Latin. Because of the variety of time peri-
ods, genres, and additional annotations covered by
the Universal Dependency (UD) (de Marneffe et al.,
2021) treebanks for Latin, we select each of the
Perseus (Smith et al., 2000; Bamman and Crane,
2011), PROIEL (Haug et al., 2009), ITTB (Pas-
sarotti, 2019), LLCT (Cecchini et al., 2020a), and
UDante (Cecchini et al., 2020b) treebanks for this
purpose. We also incorporate data from EvaLatin
2022 (Sprugnoli et al., 2022) and the Archimedes
Latinus treebank (Fantoli and de Lhoneux, 2022).

2.1. Automatic Annotation
In this section, we detail our data augmentation
methods. Both methods relate to the k-means clus-
tering algorithm, where central points—centroids—
are selected, and the distances between a data
point and these centroids relate them in some way.

2.1.1. Polarity Coordinate (PC) Clustering

The task of emotion polarity detection, for the avail-
able Latin sentiment data, categorizes each sen-
tence into one of four classes: positive, negative,
neutral, and mixed (Sprugnoli et al., 2023). This set
of classes stems from the circumplex model of af-
fect (Russell and Mehrabian, 1977; Russell, 1980)

in which emotions are plotted on a two-dimensional
plane with the axes of pleasure-displeasure and
arousal-sleep. Sentiment analysis works have of-
ten applied this theory with varying terminology
(Tian et al., 2018). In our case, we use polarity to
refer to the “direction” of sentiment (i.e., pleasing or
displeasing) and intensity to refer to the magnitude
of the sentiment (i.e., aroused or inert).

These definitions of polarity and intensity can be
used to differentiate the four classes for our task.
For a given sentence, if its polarity is definitively
pleasing, then it is positive; if its polarity is defini-
tively displeasing, then it is negative; if its polarity
has both positive and negative elements and has
high intensity, then it is mixed; and if it fits into none
of these categories (i.e., there is no moderate in-
tensity in either direction), then it is neutral. We
employ this mapping to classify sentences via the
k-means algorithm. To do so, we must determine
the representation for our classes as centroids and
our sentences as data points.

Following the idea of the circumplex model, we
establish polarity and intensity on a coordinate
plane. However, we map the space of these values
between 0 and 1, meaning that the point (0.5, 0.5)
represents a point of average polarity and intensity.
This point is equidistant from each of the four desig-
nated class centroids, which we present in Figure 1.
Although the positive and negative classes have no
innate relation to intensity, we assume that some
intensity must exist for the polarity to be noticeable.
Given these centroids, we then define a polarity
coordinate P for a sequence x as:

Px = (polarity(x), intensity(x)) (1)

polarity(x) =

 1
2|x|

|x|∑
i=1

score(xi)

 + 1
2 (2)

intensity(x) = 1
|x|

|x|∑
i=1

|score(xi)| (3)

and score outputs values between -1 and 1.
To classify sentences, we used LatinAffectus-v4

as the crux of our scoring function. Each xi ∈ x was
searched in the lexicon. To search the lexicon, we
used lemmata from the treebank sentences if they
were available and the LatinBackoffLemmatizer
from the Classical Language Toolkit (CLTK) as a
backoff option (Johnson et al., 2021).2 To prevent
the impact of sentiment words from being dimin-
ished due to the fact that the majority of words
were not found in the lexicon, we only used words
in LatinAffectus-v4 to score each sentence. This
meant that the polarity and intensity functions

2While not necessary for most treebank data, the
Archimedes Latinus treebank (Fantoli and de Lhoneux,
2022) does not provide lemmata.
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would receive a filtered x′ rather than x. Sentences
with no lexical entries were deemed neutral.

Although this method was inspired by the task
structure, we suspected that its outputs would be
noisy, as it employed static sentiment representa-
tions. To account for the noise, we attempted to
use the distances between a sentence and each
centroid to our advantage. Suppose that we have
a collection of distances d. We normalized these
distances d; call this set of normalized distances d′.
Then, we calculated a value α for each sentence
by subtracting min (d′) from 1. This α serves as
a confidence value for the given label. If the dis-
tance for a sentence and its label is low, then the
sentence may be a stronger representative for that
class and can aid more in the learning process.

With this in mind, we augmented the traditional
cross-entropy loss function with a set of these α
values, forming what we call the gold distance
weighted cross-entropy (GDW-CE) loss. Given
predictions Y′ and ground truth values Y (where
|Y′| = |Y| = N), confidence values α, and the cross-
entropy function H, the equation for this loss is:

GDW-CE(Y′, Y,α) =
N∑

i=0
(αi ∗ H(Y′

i , Yi)) (4)

2.1.2. Gaussian Clustering

Unlike k-means clustering, Gaussian clustering
does not serve as an explicit classifier; instead,
it outputs the probabilities for which a given data
point is within each cluster. Naturally, however, we
can take the cluster with the highest probability to
be the label for any given data point. Once again,
then, what remains is to establish how the class
and sentence representations are derived.

To derive class representations, we trained a
Gaussian Mixture Model (GMM) drawn from four
distributions (i.e., classes) on the Odes dataset
(Sprugnoli et al., 2023). We fitted a GMM with
the scikit-learn library (Virtanen et al., 2020) via
the expectation-maximization algorithm. To gather
representations for each sentence, we computed
sentence-level embeddings from the SPhilBERTa
model (Riemenschneider and Frank, 2023b), a pre-
trained language model for English, Latin, and An-
cient Greek based on the Sentence-BERT architec-
ture (Reimers and Gurevych, 2019). We appended
the polarity coordinate features described in Sec-
tion 2.1.1 to these embeddings.

We performed a hyperparameter grid search to
select the best GMM. Due to space considerations,
we defer the details of this search to our repository.
Because of the available data’s size, trials were
both trained and evaluated on the Odes for their
Macro-F1 score; the best GMM scored 0.37.

Embedding
{Latin BERT, LaBERTa,

PhilBERTa, mBERT, CANINE-C,
CANINE-S, SPhilBERTa}

Encoder {None, BiLSTM, Transformer}

Linear

Figure 2: Architectural options fixed across hyper-
parameter search trials. Shapes reflect the relative
dimensionality of data throughout the network.

2.1.3. Annotation Results

The outcomes of both annotation methods are pro-
vided in the middle of Table 1. The PC and Gaus-
sian datasets have dissimilar distributions, prefer-
ring the neutral and positive classes, respectively.

3. Modeling

We apply a basic neural architecture for the emo-
tion polarity detection task. As Figure 2 depicts,
there are three main parts to this architecture: the
embedding, encoder, and linear layers. For the em-
bedding and encoder layers, we have alternatives
for each which we examine in our experiments.

For our embeddings, we use all known publicly-
available encoder-based LMs containing Latin.
Latin BERT (Bamman and Burns, 2020), LaBERTa
and PhilBERTa (Riemenschneider and Frank,
2023a), and SPhilBERTa (Riemenschneider and
Frank, 2023b) are all either monolingual models (in
the case of Latin BERT and LaBERTa) or classi-
cal trilingual models (PhilBERTa and SPhilBERTa).
We also used the multilingual mBERT (Devlin
et al., 2019) and the character-based CANINE-C
and CANINE-S (Clark et al., 2022), trained with
character-based and subword-based losses, re-
spectively. We froze embeddings during training to
maintain their contextual representations.

For our encoders, we employ an identity transfor-
mation, a bidirectional LSTM (BiLSTM) (Graves and
Schmidhuber, 2005), and a Transformer (Vaswani
et al., 2017). For the BiLSTM, we concatenate the
final hidden states for both directional LSTMs to
provide the final state for classification. For the
identity layer and the Transformer, we select the
[CLS] token’s representation.

4. Experiments

4.1. Experimental Design
We divided our annotated data into three splits for
training, validation, and testing. The sets contained
80% (61,204 examples), 10% (7,651 examples),
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Embedding Encoder
Identity LSTM Transformer

Latin BERT 0.12† 0.21∗ 0.12†
LaBERTa 0.03∗ 0.17∗ 0.21†
PhilBERTa 0.06∗ 0.15∗ 0.13†
mBERT 0.07† 0.09† 0.08†
CANINE-C 0.14∗ 0.20† 0.03∗
CANINE-S 0.08† 0.17∗ 0.18†
SPhilBERTa 0.23∗ – –

Table 2: Odes Macro-F1 scores for models trained
with data annotated with PC clustering. Since
two loss functions were applied per embedding-
encoder pair, we show only each pair’s maximum
score. Values with a ∗ use cross entropy loss,
whereas values with a † use GDW-CE loss.

and 10% (7,650 examples) of the overall data, re-
spectively. We used the validation data during train-
ing to permit early stopping, setting Macro-F1 as
our criterion of interest with a patience of 10. Oth-
erwise, training would halt after 100 epochs.

We implemented our neural architecture with
the PyTorch library (Paszke et al., 2019). With
a fixed random seed, model inputs were tokenized
and truncated to the maximum sequence length
of the selected Latin LM. They were grouped into
batches of size 16 for all LMs save for CANINE-C
and CANINE-S, as such models stressed mem-
ory resources with a maximum sequence length of
2048; in this case, we used a batch size of 8.

When Transformers were used, we fixed their
attention heads to 8, used ReLU activations, and
applied PreNorm (Chen et al., 2018; Nguyen and
Salazar, 2019). We used either cross-entropy or
GDW-CE to compute the loss. We optimized the
neural networks with the Adam optimizer (Kingma
and Ba, 2015), and gradients were clipped with an
L2 norm of 1 (Pascanu et al., 2013).

4.2. Hyperparameter Search

To avoid falling prey to poor hyperparameter selec-
tions for each instance of our architecture, we per-
form a random hyperparameter search (Bergstra
and Bengio, 2012) of four trials for each instance.
We vary the learning rate, hidden size, and number
of layers in the encoder. We provide the ranges for
these values with this work’s repository.

Instances were constructed by fixing four model-
ing components: the embedding, the encoder, the
dataset, and the loss function. SPhilBERTa was
only employed with the PC dataset, as it was used
to create the Gaussian dataset; moreover, it only
used the identity-based encoder, as it creates a
sequence-level embedding. Finally, the GDW-CE
loss was only applied with the PC dataset.

Embedding Encoder
Identity LSTM Transformer

Latin BERT 0.38 0.38 0.38
LaBERTa 0.31 0.31 0.37
PhilBERTa 0.24 0.39 0.41
mBERT 0.19 0.20 0.30
CANINE-C 0.26 0.33 0.24
CANINE-S 0.27 0.37 0.30

Table 3: Odes Macro-F1 scores for models trained
with data annotated with Gaussian clustering.

Once all sets of four trials were finished, we evalu-
ated these models on the automatically-annotated
test set. The best model among these four was
then tested on the Odes data.

5. Results

We present a sampling of our experimental results
in Tables 2 and 3, emboldening top two results
across both tables. According to the Odes test set,
the Gaussian dataset had a more reliable signal
for sentiment. Our top two results used PhilBERTa
embeddings with non-identity encoders. We sub-
mitted these models to the shared task, labeling the
Transformer encoder model as our first submission
and the BiLSTM encoder model as our second.

We provide our results in the shared task in Fig. 3.
The first submission generally outperformed the
second, only falling below the other on our worst-
performing split: Seneca’s Hercules Furens. When
considering other teams’ submissions, our first sub-
mission achieved the best macro-averaged Macro-
F1 score on the Pontano split by 0.1 points, and
it narrowly missed tying for the top overall score
(merited by TartuNLP) by 0.01 points. Thus, al-
though our method did not place first, it neverthe-
less closely rivaled the best-performing method.

One question arising from our results concerns
why the Gaussian dataset broadly outperformed
the PC dataset. We speculate that this relates to the
distributions of the underlying data, as presented in
Table 1. The PC dataset heavily favored the neutral
class; whether this resembles the true distribution
or not, it poorly matched the distributions of the test
set. The neutral class is consistently the smallest
class among the emotionally-charged poems (Ho-
race), lullabies (Pontano), and tragedy (Seneca) in
the test set. Conversely, the Gaussian dataset has
a more balanced spread of classes. Yet the lean of
the Gaussian dataset’s distribution into the positive
class may help to explain our model’s first-place
performance on the Pontano subset.

To provide further evidence for this claim, we
depict confusion matrices for our best-performing
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Split Macro-Avg. Micro-Avg.
Score (↑) Rank (↓) Score (↑)

Horace 0.29 3 –
Pontano 0.42 1 –
Seneca 0.12 4 –
Total 0.28 2 0.22

Split Macro-Avg. Micro-Avg.
Score (↑) Rank (↓) Score (↑)

Horace 0.21 4 –
Pontano 0.31 3 –
Seneca 0.14 3 –
Total 0.22 4 0.22

Figure 3: Ranks and reported Macro-F1 score averages for our EvaLatin 2024 shared task submissions.
The left and right tables are for the first and second submissions, respectively. Ranks range between 1
and 4, not accounting for the baseline. When a tie occurs, the best possible ranking is displayed.
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Figure 4: Confusion matrices for our best-performing submission. The left matrix is for the whole EvaLatin
2024 test set, whereas the right matrix is for the Pontano subset. Darker colors indicate larger values on
the heatmap; text colors are shifted for readability.

submission in Figure 4.3 For both the whole test
set and the Pontano subset, the model primarily
predicted the positive class, followed by the neutral
class. In the case of the full dataset, these positive
guesses add up to the largest sources of error: the
model frequently mistakes negative sentences for
positive ones. This effect is drastically reduced
in the Pontano subset, as most of the sentences
are positive. Altogether, these points further signal
the meaningful influence of the Gaussian dataset’s
distribution on the model’s performance.

To examine this influence in more detail, we
check the level of agreement between our best
neural models and the original Gaussian clustering
annotator. Running EvaLatin’s test data through
the Gaussian model, we use Cohen’s κ (Cohen,
1960; Artstein and Poesio, 2008) to measure our
models’ agreement beyond chance. Our top two
neural models, which were trained on the Gaus-
sian model’s automatically annotated data, have κ

3The matrices for our other submission are quite sim-
ilar, so the trends described also apply to it.

values of 0.32 and 0.38. These weak agreement
scores in combination with the prior evidence seem
to imply that, although the neural models roughly
inherited the Gaussian annotator’s classification
distribution, the networks’ additional learning pro-
duced distinct cues for classification labels. Such
effects may be ripe material for further investigation
in improving low-resource polarity detection.

6. Conclusion

This paper presents two methods for data aug-
mentation in a low-resource context. Each method
employs a clustering-based approach to automati-
cally annotate Latin data for polarity detection. The
best of our models, using PhilBERTa-based em-
beddings, a Transformer encoder, and our dataset
derived from Gaussian clustering, placed second
in the task based on the macro-averaged Macro-F1
score. Future work could explore the refinement
of automatically-annotated data, perhaps integrat-
ing the expectation-maximization style of Gaussian
training into a neural network to account for noise.
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