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Abstract

In the field of spoken language understanding,
systems like Whisper and Multilingual Mas-
sive Speech (MMS) have shown state-of-the-
art performances. This study is dedicated to a
comprehensive exploration of the Whisper and
MMS systems, with a focus on assessing biases
in automatic speech recognition (ASR) inher-
ent to casual conversation speech specific to
the Portuguese language. Our investigation en-
compasses various categories, including gender,
age, skin tone color, and geo-location. Along-
side traditional ASR evaluation metrics such as
Word Error Rate (WER), we have incorporated
p-value statistical significance for gender bias
analysis. Furthermore, we extensively examine
the impact of data distribution and empirically
show that oversampling techniques alleviate
such stereotypical biases. This research repre-
sents a pioneering effort in quantifying biases
in the Portuguese language context through the
application of MMS and Whisper, contribut-
ing to a better understanding of ASR systems’
performance in multilingual settings.

1 Introduction

Conversational Artificial Intelligence (AI) has be-
come increasingly integrated into everyday appli-
cations over the past few years. The history of pre-
vious broad technologies shows that despite tempo-
rary challenges, restructuring the economy around
innovative technologies offers significant long-term
benefits (Mühleisen, 2018). This asks for fair AI
solutions that can connect people from different
backgrounds, and that enables universal access
to technology. In the context of human-machine
interactions through spoken language, Automatic
Speech Recognition (ASR) facilitates smooth in-
formation exchange within various conversational
AI applications, including machine translation, sen-
timent analysis, and question-answering systems
(Bangalore et al., 2005).

The significance of spoken language in our daily
lives emphasizes the need for ASR systems to ac-
commodate the various forms of human communi-
cation. It is thus vital that ASR systems can adeptly
manage this diversity, as it is crucial for enabling
smooth and inclusive communication across a wide
range of situations and people, and extending the
use of ASRs in domains such as emergency ser-
vices, home automation, and navigation systems.
To accommodate fairness and transparency require-
ments it is paramount to examine the prevailing
biases within various subgroups towards fair ASR
systems.

Over the past few years, there has been a growing
research community examining biases in automatic
speech recognition (ASR) systems (Koenecke et al.,
2020; Tatman, 2017; Tatman and Kasten, 2017;
Harwell, 2018; Lima et al., 2019; Blodgett et al.,
2020). This research has primarily focused on as-
sessing the impact of disparities related to gender,
age, accent, dialect, and racial meta-attributes. (It
is worth mentioning that most of these features are
considered sensitive according to legal protection
against discrimination, e.g., in the U.S.1 and in Eu-
rope2.) However, the majority of these studies have
been carried out on monolingual ASR systems for
the English language, with only a limited number
of studies addressing bias detection in non-English
languages.

In the study conducted in (Feng et al., 2021,
2024), researchers examined the (Hidden Markov
Model) HMM- Deep Neural Network (DNN) ASR
system to assess biases related to gender, age, and
accents in the context of the Dutch language. They
then proposed the use of data augmentation and
vocal tract length normalization techniques to al-
leviate these biases in Dutch ASR systems (Pa-

1https://www.whitehouse.gov/ostp/
ai-bill-of-rights/#applying

2https://ec.europa.eu/newsroom/dae/document.
cfm?doc_id=60419
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tel and Scharenborg, 2023). Another study cen-
tered on French broadcasting speech, aimed to un-
cover gender biases and revealed that the under-
representation of specific gender categories could
result in bias in HMM-DNN ASR performance, re-
gardless of gender identity (male, female, or other)
(Adda-Decker and Lamel, 2005; Garnerin et al.,
2019). Furthermore, it emphasized the importance
of a systematic examination of demographic imbal-
ances present in datasets.

For Arabic ASR system, which were developed
using Carnegie Mellon University Sphinx 3 tools3,
an investigation was conducted to understand the
impact of gender, age, and regional factors on per-
formance (Sawalha and Shariah, 2013). While
these studies laid the foundation for quantifying
biases, there remains a scarcity of research on ASR
systems trained with large amounts of multilingual
data, even though they consistently achieve state-
of-the-art performance levels.

The emergence of computational resources en-
abled the acceleration of the development of large
pre-trained acoustic models, resulting in unified
frameworks with multilingual capabilities. These
frameworks are often built upon transformer net-
works and prominently use the Wav2vec 2.0
(Baevski et al., 2020) framework. As a con-
sequence, there has been a significant push to
create multilingual ASR systems(Li et al., 2022;
Alec Radford, 2023; Zhang et al., 2023; Pratap
et al., 2023), extending their applicability to more
than 100 languages, including those with lim-
ited linguistic resources. Meta AI’s MMS system
(Pratap et al., 2023) conducted an evaluation that
included the assessment of gender and language
biases using the FLEURS dataset (Conneau et al.,
2022). However, there is still a need for a deeper un-
derstanding of the comparative differences among
various multilingual ASR systems when it comes
to quantifying potential biases.

To explore the biases present in multilingual
ASR systems trained on extensive speech data, we
investigated variants of OpenAI’s Whisper ASR
system (Alec Radford, 2023) and Meta AI’s MMS
ASR system (Pratap et al., 2023), both of which
have achieved state-of-the-art performance levels.
In addition, we selected the Casual Conversation
Dataset version 2 (CCD V2) to quantify biases and
assess the fairness of these system performances

3https://www.cs.cmu.edu/~archan/sphinxInfo.
html

in the context of the Portuguese language (Porgali
et al., 2023). Our study takes into account a diverse
spectrum of categories, including age groups, gen-
der, geographical locations, and skin tones. The
consistency in textual content across all CCD V2
recordings establishes a robust basis for the effi-
cient evaluation of system performance across a
broad array of categories. Only a limited number
of studies have delved into the influence of state-
of-the-art multilingual ASR systems on domain-
specific ASR tasks. For example, these studies
have explored code-switching between languages
using systems like Whisper and MMS (Kulkarni
et al., 2023), or they have examined the effects of
ASR errors on discourse models among groups of
students in noisy, real-world classroom settings be-
tween Whisper and Google ASR system (Cao et al.,
2023).

More often, an imbalanced distribution of eval-
uation data across various sub-categories can re-
sult in an inadequate analysis of the evaluation
process itself. Therefore, we explore two resam-
pling methods, namely, naïve and Synthetic Mi-
nority Oversampling Technique (SMOTE)(Chawla
et al., 2002), to ensure a balanced data distribution
across each subgroup when quantifying the biases.
In the assessment of ASR systems, our primary
choice of metrics includes Word Error Rate (WER)
and Character Error Rate (CER)4. Interestingly, we
observe that oversampling techniques can alleviate
performance disparities between certain subgroups.

The structure of the paper is as follows. In Sec-
tion 2, we provide an overview of the Casual Con-
versation dataset, which is utilized to quantify bi-
ases in multilingual ASR systems in the Portuguese
language. We described the specifics of the MMS
ASR system and the variants of Whisper ASR sys-
tems along with the evaluation protocol in Section
3. We outline results along with an analysis on
various categories to to quantify biases in Section
4, along with the corresponding evaluation method-
ologies. Section 5 details the discussion, and we
draw our conclusions in Section 6 along with po-
tential directions for future work.

The main contributions of this paper are as
follows:

1. It presents the first study on analyzing dispari-
ties within multilingual ASR systems focused

4In this paper, we only include the WER results. The
CER results are provided in https://biasinai.github.io/
asrbias/.
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on the Portuguese language.

2. It emphasizes the critical significance of data
distribution among sub-categories by employ-
ing oversampling techniques.

3. It illustrates the comparative distinctions be-
tween Whisper ASR and MMS ASR, and ex-
amines the impact of model parameters on the
development of an efficient system design.

4. In addition to gender and age groups, it inves-
tigates skin tone and geo-location as criteria
to measure inter-racial biases.

2 Dataset Description

The CCD V2 dataset is open-source and can be
accessed through the Meta AI website5. It repre-
sents the speech of 5,567 unique speakers from
various regions, including India, the United States
of America, Indonesia, Vietnam, Brazil, Mexico,
and the Philippines. This compilation results in
five audio samples per individual, yielding a total
of 26,467 video recordings. The dataset encom-
passes seven self-labeled attributes, including de-
tails about the speaker’s age, gender, native and
secondary languages or dialects, disabilities, physi-
cal characteristics, and adornments, as well as ge-
ographic location. Additionally, it features four
other characteristics: two skin tone scales (Monk
Skin Tone (Monk, 2019) and Fitzpatrick Skin Type
(Molina et al., 2020; Ash et al., 2015)), voice tim-
bre, the speaker’s activity, categorized as gesture,
action, or appearance, and details about the record-
ing setup, which covers video quality, background
environment, and video configuration. For Monk
skin tone scale-10 only one sample was available
for Portuguese language. Therefore, in order to
avoid skewed comparison between skin-tone scales
using Monk skin tone, we only conducted a study
using Fitzpatrick skin type.

The CCD V2 comprises 354 hours of recordings
where speakers responded to specific questions in
a non-scripted manner and 319 hours of recordings
in which individuals read passages from F. Dos-
toyevsky’s “The Idiot”, translated into various lan-
guages. Throughout this paper, we utilized scripted
recordings for the Portuguese language. As each
scripted recording had the same textual content and
phonetic variations, it enables the examination of

5https://ai.meta.com/datasets/casual-conversations-v2-
dataset/

meta-attributes leading to performance differences.
For more comprehensive details of CCD V2 and
the dataset design process, please refer to the works
published in (Porgali et al., 2023) and (Hazirbas
et al., 2021).

In the context of assessing the fairness of ASR
systems, we focused primarily on a subset of
scripted recordings, with a strong emphasis on the
Portuguese language. In this study, we concen-
trated on four annotated labels: gender, age, Fitz-
patrick scale, and geographic location. To simplify
our analysis, we categorized speakers into seven
age groups: 18-24, 25-30, 31-36, 37-42, 43-50, 51-
60, and 61+. After the initial analysis of the evalu-
ation sample distribution for each sub-category, we
observed imbalanced distributions among various
subgroups. We thus explored resampling strategies
to ensure that biases are not introduced into the
computed results due to imbalanced distributions
across subgroups.

3 Empirical study

In this empirical study, we initiate our investigation
by conducting a thorough analysis of the influence
of various sampling techniques on performance
disparities within multilingual ASR systems for
Portuguese. Additionally, in Section 3.1, we first
present the ASR systems employed in this research.
Subsequently, we outline the evaluation protocol
and data preparation in Section 3.2.

3.1 ASR Systems

This study centers around the utilization of state-
of-the-art, open-source multilingual ASR systems,
specifically Whisper and the Multilingual Mas-
sive Speech Systems. Both of these systems have
demonstrated their efficacy in a range of speech-
processing tasks, including audio classification,
speech translation, and text-to-speech synthesis.
They have been trained on extensively large-scale
multilingual datasets using self-supervised and
multi-task learning techniques, enabling support
for over 100 languages.

3.1.1 Whisper

Whisper (Alec Radford, 2023) is a robust speech
recognition model presented by OpenAI6 in 2022.
Whisper is trained using a multitask learning on
680,000 hours of labeled multilingual recordings

6https://openai.com/research/whisper
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collected from the Internet, along with the cor-
responding transcriptions filtered from machine-
generated ones. In total 96 languages are cov-
ered by approximately 117,000 hours of audio data,
making Whisper a powerful tool for multilingual
speech recognition.

Whisper incorporates the Transformer encoder-
decoder architecture (Vaswani et al., 2017) with the
implementation of multitask learning techniques al-
lowing language identification, multilingual speech
transcription, along with word-level timestamps.
The input audio is split into thirty-second chunks,
which makes the transcription of long recordings
more effective. In the Whisper framework, the en-
coder processes log Mel spectrogram inputs, gen-
erating relevant features for the decoder. The de-
coder, in turn, consumes these encoder features,
positional embeddings, and a sequence of prompt
tokens. Subsequently, it produces the transcribed
text corresponding to the input speech.

Whisper has different variants based on model
parameter sizes such as Tiny (39 Million), Base (74
Million), Small (244 Million), Medium (769 Mil-
lion), Large (1550 Million), and Large-v2 (1550
Million). Whisper models are primarily divided
into two categories based on languages and tasks:
English-only models and multilingual models. In
this paper, we incorporated Medium, Large, and
Large-v2 variants of Whisper.

3.1.2 Massively Multilingual Speech system
In 2023, Meta AI released the Massively Multi-
lingual Speech (MMS) project, as documented in
(Pratap et al., 2023), expanding its language sup-
port to encompass over 1000 languages for various
speech processing applications. The primary com-
ponents of the MMS system include a novel dataset
derived from publicly accessible religious texts and
the adept use of cross-lingual self-supervised learn-
ing. The MMS project encompasses various tasks,
such as speech recognition, language identifica-
tion, and speech synthesis. MMS is built upon
the Wav2Vec 2.0 (Baevski et al., 2020) architec-
ture and has undergone training through a combina-
tion of cross-lingual self-supervised learning and
supervised pre-training for ASR. It incorporates
language adapters that can be dynamically loaded
and interchange during inference, featuring mul-
tiple Transformer blocks, each augmented with a
language-specific adapter.

The authors compiled two datasets using texts
from the New Testament and the Bible, along with

recordings of readings of these religious texts avail-
able on the Internet. The labeled dataset (MMS-
lab) comprises 1,306 audio recordings of New Tes-
tament readings in 1,130 languages, resulting in
49,000 hours of data and approximately 32 hours
of data per language. The audio underwent sev-
eral alignment stages, including training several
alignment models and a final filtering of noisy or
paraphrased data. The unlabeled dataset (MMS-
unlab) contains 9,345 hours of audio and includes
recordings collected from the Global Recordings
Network, organized into 3,860 languages. The
MMS system is available in two variants based
on model parameters, with 317 million and 965
million parameters. For this study, we utilized the
MMS system with 965 Million model parameters.

3.2 Preprocessing and evaluation processes

In this subsection, we will first outline the pre-
processing steps employed to prepare the evalua-
tion dataset using CCD V2 for Portuguese. We
will explain the sampling methods for analyzing
biases within sub-categories and subsequently dis-
cuss the evaluation measures used to assess dispar-
ities among these sub-categories.

3.2.1 Handling imbalance
Imbalanced evaluation data can have a detrimental
effect on the results, making it challenging to dis-
cern meaningful distinctions between the groups
being compared. From Table 1, we observe that
initially collected samples for Portuguese have un-
balanced distributions across several categories,
which may impact the assessment of ASR systems
towards measuring disparities towards underrepre-
sented classes. Therefore, we opted for data balanc-
ing approaches, specifically focused on oversam-
pling, and subsequently compared the results.

It is also worth mentioning that after preliminary
analysis of ASR systems results, we observed that
the Portuguese subset of the CCD V2 dataset con-
tains audio recordings named "Portuguese scripted"
but representing the speech of people speaking on
various topics but not reading the passage from
Dostoevsky’s novel. This might have been a mis-
take during the compilation of the CCD V2 dataset.
These samples were deleted from our evaluation
data since the WER for the corresponding tran-
scriptions was exceptionally high and negatively
affected the overall performance.

At first, we used Naïve sampling (Naïve) based
on the ’gender’ category since the WER values
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Gender Fitzpatrick scale Age Groups Geo-location
Male Female T.1 T.2 T.3 T.4 T.5 T.6 18-24 25-30 31-36 37-42 43-50 51-60 61+ MA MT RN GO PI RS RJ SP PE PR MG

Initial 240 500 11 192 289 159 72 17 83 201 164 137 103 44 8 9 27 25 11 7 28 130 379 38 55 31
Naïve 1019 1009 25 681 743 345 164 70 293 282 297 293 283 274 285 18 47 39 24 34 70 409 1110 59 119 99
SMOTE 4443 4443 1925 1893 2630 1132 322 984 1014 2918 1703 1236 978 458 579 892 854 845 841 830 805 796 787 769 744 723

Table 1: Statistical representation of samples for demographic categories across Initial, Naïve, and SMOTE datasets.
The abbreviations for ‘Geo-location’ are as follows: RN - Rio Grande do Norte, SP - Sao Paulo, RS - Rio Grande
do Sul, GO -Goias, MT - Mato Grosso, PR - Parana, RJ - Rio de Janeiro, MG - Minas Gerais, PI - Piaui, PE -
Pernambuco, MA - Maranhao. The abbreviations for ‘Fitzpatrick scale’ are as follows: T.1 - type i, T.1 - type ii, T.1
- type iii, T.1 - type iv, T.1 - type v, T.1 - type vi.

for this category appeared to differ significantly.
We achieved data balance by randomly duplicating
instances until we had an approximately equal num-
ber of male and female records. However, we found
that naïve sampling did not improve the balance
of the other categories. Therefore, we turned to
the Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002) in the final stage.

The SMOTE algorithm aims to tackle the issue
of imbalanced data by creating synthetic observa-
tions for minority classes. It does not simply repeat
the existing samples but rather creates similar ex-
amples that improve performance accuracy. It starts
with choosing an instance in the minority class and
computing the difference of feature vectors with
neighboring observations. After that, the algorithm
defines a region of k nearest neighbors around the
selected instance. Next, the algorithm calculates
the difference between observations and multiplies
the difference vector by a random number from the
range (0, 1), thus having a new synthesized sample.
We do the resampling for every category one by
one assuming the improvement in results.

The statistics for evaluation data compiled using
oversampling techniques along with initial samples
are shown in Table 1. The average duration of
each sample used for the evaluation of multilingual
ASR systems corresponds to 2 minutes with the
same textual content. Therefore, the robustness of
ASR systems to long-form audio is an important
consideration in the development and deployment
of ASR technology.

3.2.2 Evaluation strategy
For the evaluation of both models, we use the Word
Error Rate (WER), a standard metric for ASR. The
Word Error Rate depicts the percentage of incor-
rectly recognized words and is calculated as fol-
lows:

WER =
S +D + I

N
, (1)

where S stands for number of substitutions, D for
the number of deletions, I is the number of in-
sertions, and N for the number of words in the

Method W-L W-L-V2 W-M MMS
Initial 0.00022 0.00018 0.0011 0.195
Naïve 2.07e-17 1.54e-17 1.45e-11 0.177
SMOTE 0.676 0.603 0.778 0.563

Table 2: p-values for Whisper ASR variants and MMS
for the Gender category across Initial, Naïve and
SMOTE datasets. Whisper ASR variants are indicated
as, Whisper-Large (W-L), Whisper-Large-V2 (W-L-
V2), and Whisper-Medium (W-M).

reference transcription. In the current paper, we
report the WER for comparison purposes with the
literature, and we also report the Character Error
Rate (CER) in https://biasinai.github.io/
asrbias/. This allows us to compare results ob-
jectively and to identify performance biases in the
4 ASR systems.

4 Results and Analysis

In this section, we present a comprehensive analy-
sis of Word Error Rate (WER) within distinct cate-
gories as provided by CCD V2. These categories
include gender (Section 4.1), skin tone (Section
4.2), age groups (Section 4.3), and geo-location
(Section 4.4). As previously mentioned, our exper-
imentation involved the use of three Whisper ASR
variants: Medium (769 million parameters), Large
(1550 million parameters), and Large-v2 (1550 mil-
lion parameters)7 (which maintains the same pa-
rameter count but benefits from extended training
with regularization). Additionally, we utilized the
MMS ASR system8 with 965 million parameters.

4.1 Gender analysis
We illustrate the performance of ASR systems for
the Portuguese language, on the gender subgroups
’Male’ and ’Female’. From Figure 2, we observe
a subtle gender bias when examining the Whis-
per ASR variants, which favors males in both the
Initial and naïve sampling techniques. However,
the use of SMOTE sampling results in a more bal-
anced ASR performance between the gender sub-

7https://huggingface.co/openai/whisper-large-v2
8https://huggingface.co/facebook/mms-1b-all
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Figure 1: Bar plots depicting Whisper and ASR performance across the Fitzpatrick skin-tone scale, ranging from
type-I to type-VI, for both male and female genders, with results for initial samples, naïve sampling, and SMOTE
sampling

Figure 2: Bar-plots demonstrating performance of mul-
tilingual ASR systems using Whisper ASR variants
and MMS for impact on male and female genders us-
ing WER under three sampling methods, initial, naïve
and SMOTE. Whisper ASR variants are indicated as,
Whisper-Large (W-L), Whisper-Large-V2 (W-L-V2),
and Whisper-Medium (W-M).

groups. Notably, the MMS system outperforms the
Whisper ASR variants, exhibiting comparatively
balanced WER across both genders. As illustrated
in Figure 2, we observe the absence of significant
performance disparities between male and female
genders.

In addition to analyzing WERs, we also con-
ducted a p-value analysis to assess the statistical sig-
nificance of gender-related differences. In the ex-
amination of Table 2, we observed that the p-values
for Whisper ASR variants applied to initial sam-
ples and Naïve sampling fell below the significance
threshold of 0.05. This suggests that statistically
significant differences exist between male and fe-
male gender categories in these cases. Conversely,
the p-value statistics for the MMS approach consis-
tently exceeded 0.05, indicating that there are no
significant performance variations across both gen-
ders regardless of the sampling method. Regarding
SMOTE sampling, the p-values for all ASR sys-
tems exceeded the 0.05 threshold, signifying evi-
dence of mitigating gender biases in this context.

Figure 3: Bar-plots illustrating the distribution of mean
WER for Fitzpatrick skin tone scales across Initial,
naïve, and SMOTE sampling methods.

After this, we extended our study of ASR sys-
tems with the distribution of WER performances
concerning skin tone as measured by the Fitzpatrick
skin type and gender. This examination is depicted
in Figure 1. Significant disparities are evident
across different skin tone types between male and
female individuals. Specifically, within the Whis-
per ASR variants, notable performance differences
are observed for skin-tone type-I and type-VI. In
these cases, the male subgroup exhibits better WER
compared to the female subgroup, particularly in
the context of initial samples and naïve sampling
approaches. Moreover, the MMS ASR system
demonstrates a relatively even distribution of WER
across all skin-tone types and outperforms all vari-
ants of the Whisper ASR. It is worth highlighting
that, across all the ASR systems under examina-
tion, the use of SMOTE sampling has consistently
played a role in mitigating performance disparities,
leading to more balanced outcomes across gender
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Figure 4: Bar-plots illustrating distribution of WER for age groups categorized into five sub-sets (18-24, 25-30,
31-36, 37-42, 42-50, 51-60, 61+) across initial, naïve and SMOTE sampling methods.

Figure 5: The visualization of mean WER distribution in each Portuguese state. The abbreviations of states are as
follows: RN - Rio Grande do Norte, SP - Sao Paulo, RS - Rio Grande do Sul, GO -Goias, MT - Mato Grosso, PR -
Parana, RJ - Rio de Janeiro, MG - Minas Gerais, PI - Piaui, PE - Pernambuco, MA - Maranhao.

subgroups.

4.2 Skin-tone analysis

We also examine the impact of ASR performance
within sub-categories using categorized by Fitz-
patrick skin tone type, without conditioning on
other meta-attributes. Figure 3 shows the relative
performance variations across various sampling
techniques applied to ASR systems. Notably, we
observe that individuals with skin types I to III
demonstrate comparatively better WER than those
with skin type IV. This observation sheds light
on potential racial biases in ASR systems, where
greater skin-type variations often indicate darker
skin colors.

However, amidst these disparities, the MMS
ASR system stands out with evenly distributed
WER measures across all skin-type scales. When
assessing the differences introduced by sampling
approaches, initial samples, and naïve sampling
reveal disparities among skin-tone subgroups. In
contrast, the consistent use of SMOTE sampling
proves effective in mitigating discrepancies across
all the ASR systems under investigation.

4.3 Age group analysis

In Figure 4, we present an age group analysis of
the Portuguese language for ASR systems using
three different sampling techniques: initial samples,
naïve sampling, and SMOTE sampling. Across all
the sampling methods, the MMS ASR system con-
sistently maintains WER measures below 25% for
all age groups, exhibiting a relatively even distri-
bution of WER values. In contrast, the Whisper
ASR variants demonstrate disproportionate WER
measures, particularly noticeable between the age
groups of 18-36 and 36+. Moreover, the perfor-
mance of the Whisper ASR degrades as age groups
increase. However, the utilization of SMOTE sam-
pling significantly improves the WER of the Whis-
per systems, bringing it to an overall 25%.

This distinctively highlights the positive impact
of SMOTE sampling in reducing performance dis-
parities across various age groups for both the
Whisper and MMS ASR systems.

4.4 Geo-location analysis

Figure 5 provides a comprehensive examination
of the impact of different sampling techniques on
ASR performance disparities across various regions
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in Brazil. Notably, when considering the Whisper
ASR system, regions such as São Paulo (SP), Piauí
(PI), Rio Grande do Norte (RN), and Rio Grande
do Sul (RS) are notably affected by performance
differences, regardless of whether initial samples
or naïve sampling methods are employed. These
regions exhibit significant variations in WER com-
pared to other regions. Overall, the MMS ASR
system displays a more even distribution of evalua-
tion measures across all sampling approaches and
generally outperforms the Whisper ASR variants.
Furthermore, it is notable to highlight that, despite
observing proportionate WERs across most regions
in Brazil, the MMS ASR system experiences a de-
cline in performance specifically in the Piauí (PI)
region for all sampling approaches.

Even after the application of SMOTE sampling,
the Whisper ASR variants continue to exhibit con-
sistently higher WER values in the Rio Grande
do Norte (RN) region. However, SMOTE sam-
pling effectively mitigates WER discrepancies in
the Piauí (PI) region. This underscores the distinct
challenges posed by regional variations in ASR per-
formance and underscores the potential of SMOTE
sampling in addressing these disparities.

5 Discussion and limitations

Our results reveal that all 4 models show mild WER
performance disparities when considering the indi-
vidual subgroups of the categories ‘Gender’, ‘Age’,
‘Skin Tone Color’, and ‘Geo-location’, with a con-
sistently better performance of the MMS model
over the three Whisper models. However, when
analyzing the gendered subcategories of ‘Age’,
‘Skin Tone Color’, and ‘Geo-location’, we observe
significant differences in WER, with a noticeable
bias that privileges the ‘Male’ subgroup; see addi-
tional results in https://biasinai.github.io/
asrbias/.

Our study also shows that oversampling ap-
proaches can alleviate these disparities between
the two gender subgroups. This is particularly ev-
ident in Figure 2, where WER performances are
balanced for the ‘Male’ and ‘Female’ subgroups
over the 4 models considered. The same trend
was also observed for the other gendered cate-
gories and with respect to the Character Error Rate
(CER) in the link provided earlier. The study shows
that performances of Whisper variants demonstrate
higher sensitivity to the number of model parame-
ters, whereas the MMS system, despite having 40%

fewer parameters than Whisper Large, exhibits bet-
ter robustness over the various categories.

Despite promising, these results naturally ask
for similar comparisons with respect to other per-
formance and bias metrics. Another limitation of
our study is that it was carried out solely on the
CCD V2. In (Meyer et al., 2020), the Artie Bias
Corpus is curated as a subset of the Mozilla Com-
mon Voice corpus. It includes demographic tags
for age, gender, and accent, which allows for the
examination of disparities in the English language.
It is imperative to construct bias-focused datasets
using publically available resources for Portuguese.

Furthermore, we can also extend this investi-
gation to other state-of-the-art multilingual ASR
systems such as Universal speech model (Zhang
et al., 2023), ASR2K (Li et al., 2022), and Deep-
Speech (Hannun et al., 2014) and on other tasks
(e.g., speaker verification (Toussaint and Ding,
2022)). Also, we only experimented with the origi-
nal SMOTE (Chawla et al., 2002) framework, but
improvements could be obtained with dedicated
versions, e.g., (Alex and Nayahi, 2023), (Dablain
et al., 2023), (Maldonado et al., 2022). Our study
focused on the Portuguese language but we are
currently extending it to other languages. Finally,
these results ask for a thorough analysis to detect
the speech meta-features that trigger the disparate
behavior of these ASR systems. For instance, cor-
relational features among skin-tone scale and voice-
timber in speech utterances affect the disparity gap
in performance.

6 Conclusion

In this work, we presented an extensive study of
recent ASR systems, namely, Whisper and MMS,
in the light of stereotypical biases such as gender,
age, skin tone, and geo-location, for the Portuguese
language. Despite observing mild performance dis-
parities concerning individual categories such as
‘Age’, ‘Skin Tone Color’, and ‘Geo-location’, we
empirically show significant performance differ-
ences between the ‘Male’ and ‘Female’ subgroups.
The first observation was to notice the imbalance
in the various distributions, and that a naïve over-
sampling may further contribute to disparate per-
formance behavior. This motivated us to employ
SMOTE, and our results attested that oversampling
technique has an overall beneficial impact in reduc-
ing performance differences. We also discuss some
limitations of our study along with future work.
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