@inproceedings{xue-etal-2024-autore,
title = "{A}uto{RE}: Document-Level Relation Extraction with Large Language Models",
author = "Xue, Lilong and
Zhang, Dan and
Dong, Yuxiao and
Tang, Jie",
editor = "Cao, Yixin and
Feng, Yang and
Xiong, Deyi",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-demos.20/",
doi = "10.18653/v1/2024.acl-demos.20",
pages = "211--220",
abstract = "Large Language Models (LLMs) have demonstrated exceptional abilities in comprehending and generating text, motivating numerous researchers to utilize them for Information Extraction (IE) purposes, including Relation Extraction (RE). Nonetheless, most existing methods are predominantly designed for Sentence-level Relation Extraction (SentRE) tasks, which typically encompass a restricted set of relations and triplet facts within a single sentence. Furthermore, certain approaches resort to treating relations as candidate choices integrated into prompt templates, leading to inefficient processing and suboptimal performance when tackling Document-Level Relation Extraction (DocRE) tasks, which entail handling multiple relations and triplet facts distributed across a given document, posing distinct challenges. To overcome these limitations, we introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts). Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios. Additionally, we have developed an easily extensible RE framework using a Parameters Efficient Fine Tuning (PEFT) algorithm (QLoRA). Our experiments on the RE-DocRED dataset showcase AutoRE`s best performance, achieving state-of-the-art results, surpassing TAG by 10.03{\%} and 9.03{\%} respectively on the dev and test set. The code is available and the demonstration video is provided."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xue-etal-2024-autore">
<titleInfo>
<title>AutoRE: Document-Level Relation Extraction with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lilong</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxiao</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large Language Models (LLMs) have demonstrated exceptional abilities in comprehending and generating text, motivating numerous researchers to utilize them for Information Extraction (IE) purposes, including Relation Extraction (RE). Nonetheless, most existing methods are predominantly designed for Sentence-level Relation Extraction (SentRE) tasks, which typically encompass a restricted set of relations and triplet facts within a single sentence. Furthermore, certain approaches resort to treating relations as candidate choices integrated into prompt templates, leading to inefficient processing and suboptimal performance when tackling Document-Level Relation Extraction (DocRE) tasks, which entail handling multiple relations and triplet facts distributed across a given document, posing distinct challenges. To overcome these limitations, we introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts). Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios. Additionally, we have developed an easily extensible RE framework using a Parameters Efficient Fine Tuning (PEFT) algorithm (QLoRA). Our experiments on the RE-DocRED dataset showcase AutoRE‘s best performance, achieving state-of-the-art results, surpassing TAG by 10.03% and 9.03% respectively on the dev and test set. The code is available and the demonstration video is provided.</abstract>
<identifier type="citekey">xue-etal-2024-autore</identifier>
<identifier type="doi">10.18653/v1/2024.acl-demos.20</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-demos.20/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>211</start>
<end>220</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AutoRE: Document-Level Relation Extraction with Large Language Models
%A Xue, Lilong
%A Zhang, Dan
%A Dong, Yuxiao
%A Tang, Jie
%Y Cao, Yixin
%Y Feng, Yang
%Y Xiong, Deyi
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F xue-etal-2024-autore
%X Large Language Models (LLMs) have demonstrated exceptional abilities in comprehending and generating text, motivating numerous researchers to utilize them for Information Extraction (IE) purposes, including Relation Extraction (RE). Nonetheless, most existing methods are predominantly designed for Sentence-level Relation Extraction (SentRE) tasks, which typically encompass a restricted set of relations and triplet facts within a single sentence. Furthermore, certain approaches resort to treating relations as candidate choices integrated into prompt templates, leading to inefficient processing and suboptimal performance when tackling Document-Level Relation Extraction (DocRE) tasks, which entail handling multiple relations and triplet facts distributed across a given document, posing distinct challenges. To overcome these limitations, we introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts). Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios. Additionally, we have developed an easily extensible RE framework using a Parameters Efficient Fine Tuning (PEFT) algorithm (QLoRA). Our experiments on the RE-DocRED dataset showcase AutoRE‘s best performance, achieving state-of-the-art results, surpassing TAG by 10.03% and 9.03% respectively on the dev and test set. The code is available and the demonstration video is provided.
%R 10.18653/v1/2024.acl-demos.20
%U https://aclanthology.org/2024.luhme-demos.20/
%U https://doi.org/10.18653/v1/2024.acl-demos.20
%P 211-220
Markdown (Informal)
[AutoRE: Document-Level Relation Extraction with Large Language Models](https://aclanthology.org/2024.luhme-demos.20/) (Xue et al., ACL 2024)
ACL