@inproceedings{huang-etal-2024-progressively,
title = "Progressively Modality Freezing for Multi-Modal Entity Alignment",
author = "Huang, Yani and
Zhang, Xuefeng and
Zhang, Richong and
Chen, Junfan and
Kim, Jaein",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.190/",
doi = "10.18653/v1/2024.acl-long.190",
pages = "3477--3489",
abstract = "Multi-Modal Entity Alignment aims to discover identical entities across heterogeneous knowledge graphs. While recent studies have delved into fusion paradigms to represent entities holistically, the elimination of features irrelevant to alignment and modal inconsistencies is overlooked, which are caused by inherent differences in multi-modal features. To address these challenges, we propose a novel strategy of progressive modality freezing, called PMF, that focuses on alignment-relevant features and enhances multi-modal feature fusion. Notably, our approach introduces a pioneering cross-modal association loss to foster modal consistency.Empirical evaluations across nine datasets confirm PMF`s superiority, demonstrating state-of-the-art performance and the rationale for freezing modalities. Our code is available at https://github.com/ninibymilk/PMF-MMEA."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2024-progressively">
<titleInfo>
<title>Progressively Modality Freezing for Multi-Modal Entity Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yani</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuefeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junfan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaein</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-Modal Entity Alignment aims to discover identical entities across heterogeneous knowledge graphs. While recent studies have delved into fusion paradigms to represent entities holistically, the elimination of features irrelevant to alignment and modal inconsistencies is overlooked, which are caused by inherent differences in multi-modal features. To address these challenges, we propose a novel strategy of progressive modality freezing, called PMF, that focuses on alignment-relevant features and enhances multi-modal feature fusion. Notably, our approach introduces a pioneering cross-modal association loss to foster modal consistency.Empirical evaluations across nine datasets confirm PMF‘s superiority, demonstrating state-of-the-art performance and the rationale for freezing modalities. Our code is available at https://github.com/ninibymilk/PMF-MMEA.</abstract>
<identifier type="citekey">huang-etal-2024-progressively</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.190</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.190/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>3477</start>
<end>3489</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Progressively Modality Freezing for Multi-Modal Entity Alignment
%A Huang, Yani
%A Zhang, Xuefeng
%A Zhang, Richong
%A Chen, Junfan
%A Kim, Jaein
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F huang-etal-2024-progressively
%X Multi-Modal Entity Alignment aims to discover identical entities across heterogeneous knowledge graphs. While recent studies have delved into fusion paradigms to represent entities holistically, the elimination of features irrelevant to alignment and modal inconsistencies is overlooked, which are caused by inherent differences in multi-modal features. To address these challenges, we propose a novel strategy of progressive modality freezing, called PMF, that focuses on alignment-relevant features and enhances multi-modal feature fusion. Notably, our approach introduces a pioneering cross-modal association loss to foster modal consistency.Empirical evaluations across nine datasets confirm PMF‘s superiority, demonstrating state-of-the-art performance and the rationale for freezing modalities. Our code is available at https://github.com/ninibymilk/PMF-MMEA.
%R 10.18653/v1/2024.acl-long.190
%U https://aclanthology.org/2024.luhme-long.190/
%U https://doi.org/10.18653/v1/2024.acl-long.190
%P 3477-3489
Markdown (Informal)
[Progressively Modality Freezing for Multi-Modal Entity Alignment](https://aclanthology.org/2024.luhme-long.190/) (Huang et al., ACL 2024)
ACL
- Yani Huang, Xuefeng Zhang, Richong Zhang, Junfan Chen, and Jaein Kim. 2024. Progressively Modality Freezing for Multi-Modal Entity Alignment. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3477–3489, Bangkok, Thailand. Association for Computational Linguistics.