@inproceedings{sahinuc-etal-2024-systematic,
title = "Systematic Task Exploration with {LLM}s: A Study in Citation Text Generation",
author = "{\c{S}}ahinu{\c{c}}, Furkan and
Kuznetsov, Ilia and
Hou, Yufang and
Gurevych, Iryna",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.265/",
doi = "10.18653/v1/2024.acl-long.265",
pages = "4832--4855",
abstract = "Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation {--} a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sahinuc-etal-2024-systematic">
<titleInfo>
<title>Systematic Task Exploration with LLMs: A Study in Citation Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Furkan</namePart>
<namePart type="family">Şahinuç</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilia</namePart>
<namePart type="family">Kuznetsov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufang</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation – a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available.</abstract>
<identifier type="citekey">sahinuc-etal-2024-systematic</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.265</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.265/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>4832</start>
<end>4855</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Systematic Task Exploration with LLMs: A Study in Citation Text Generation
%A Şahinuç, Furkan
%A Kuznetsov, Ilia
%A Hou, Yufang
%A Gurevych, Iryna
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F sahinuc-etal-2024-systematic
%X Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation – a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available.
%R 10.18653/v1/2024.acl-long.265
%U https://aclanthology.org/2024.luhme-long.265/
%U https://doi.org/10.18653/v1/2024.acl-long.265
%P 4832-4855
Markdown (Informal)
[Systematic Task Exploration with LLMs: A Study in Citation Text Generation](https://aclanthology.org/2024.luhme-long.265/) (Şahinuç et al., ACL 2024)
ACL