@inproceedings{ma-etal-2024-event,
title = "Event-Radar: Event-driven Multi-View Learning for Multimodal Fake News Detection",
author = "Ma, Zihan and
Luo, Minnan and
Guo, Hao and
Zeng, Zhi and
Hao, Yiran and
Zhao, Xiang",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.316/",
doi = "10.18653/v1/2024.acl-long.316",
pages = "5809--5821",
abstract = "The swift detection of multimedia fake news has emerged as a crucial task in combating malicious propaganda and safeguarding the security of the online environment. While existing methods have achieved commendable results in modeling entity-level inconsistency, addressing event-level inconsistency following the inherent subject-predicate logic of news and robustly learning news representations from poor-quality news samples remain two challenges. In this paper, we propose an Event-diven fake news detection framework (Event-Radar) based on multi-view learning, which integrates visual manipulation, textual emotion and multimodal inconsistency at event-level for fake news detection. Specifically, leveraging the capability of graph structures to capture interactions between events and parameters, Event-Radar captures event-level multimodal inconsistency by constructing an event graph that includes multimodal entity subject-predicate logic. Additionally, to mitigate the interference of poor-quality news, Event-Radar introduces a multi-view fusion mechanism, learning comprehensive and robust representations by computing the credibility of each view as a clue, thereby detecting fake news. Extensive experiments demonstrate that Event-Radar achieves outstanding performance on three large-scale fake news detection benchmarks. Our studies also confirm that Event-Radar exhibits strong robustness, providing a paradigm for detecting fake news from noisy news samples."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2024-event">
<titleInfo>
<title>Event-Radar: Event-driven Multi-View Learning for Multimodal Fake News Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zihan</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minnan</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiran</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The swift detection of multimedia fake news has emerged as a crucial task in combating malicious propaganda and safeguarding the security of the online environment. While existing methods have achieved commendable results in modeling entity-level inconsistency, addressing event-level inconsistency following the inherent subject-predicate logic of news and robustly learning news representations from poor-quality news samples remain two challenges. In this paper, we propose an Event-diven fake news detection framework (Event-Radar) based on multi-view learning, which integrates visual manipulation, textual emotion and multimodal inconsistency at event-level for fake news detection. Specifically, leveraging the capability of graph structures to capture interactions between events and parameters, Event-Radar captures event-level multimodal inconsistency by constructing an event graph that includes multimodal entity subject-predicate logic. Additionally, to mitigate the interference of poor-quality news, Event-Radar introduces a multi-view fusion mechanism, learning comprehensive and robust representations by computing the credibility of each view as a clue, thereby detecting fake news. Extensive experiments demonstrate that Event-Radar achieves outstanding performance on three large-scale fake news detection benchmarks. Our studies also confirm that Event-Radar exhibits strong robustness, providing a paradigm for detecting fake news from noisy news samples.</abstract>
<identifier type="citekey">ma-etal-2024-event</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.316</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.316/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>5809</start>
<end>5821</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Event-Radar: Event-driven Multi-View Learning for Multimodal Fake News Detection
%A Ma, Zihan
%A Luo, Minnan
%A Guo, Hao
%A Zeng, Zhi
%A Hao, Yiran
%A Zhao, Xiang
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ma-etal-2024-event
%X The swift detection of multimedia fake news has emerged as a crucial task in combating malicious propaganda and safeguarding the security of the online environment. While existing methods have achieved commendable results in modeling entity-level inconsistency, addressing event-level inconsistency following the inherent subject-predicate logic of news and robustly learning news representations from poor-quality news samples remain two challenges. In this paper, we propose an Event-diven fake news detection framework (Event-Radar) based on multi-view learning, which integrates visual manipulation, textual emotion and multimodal inconsistency at event-level for fake news detection. Specifically, leveraging the capability of graph structures to capture interactions between events and parameters, Event-Radar captures event-level multimodal inconsistency by constructing an event graph that includes multimodal entity subject-predicate logic. Additionally, to mitigate the interference of poor-quality news, Event-Radar introduces a multi-view fusion mechanism, learning comprehensive and robust representations by computing the credibility of each view as a clue, thereby detecting fake news. Extensive experiments demonstrate that Event-Radar achieves outstanding performance on three large-scale fake news detection benchmarks. Our studies also confirm that Event-Radar exhibits strong robustness, providing a paradigm for detecting fake news from noisy news samples.
%R 10.18653/v1/2024.acl-long.316
%U https://aclanthology.org/2024.luhme-long.316/
%U https://doi.org/10.18653/v1/2024.acl-long.316
%P 5809-5821
Markdown (Informal)
[Event-Radar: Event-driven Multi-View Learning for Multimodal Fake News Detection](https://aclanthology.org/2024.luhme-long.316/) (Ma et al., ACL 2024)
ACL