@inproceedings{ren-etal-2024-learning,
title = "Learning or Self-aligning? Rethinking Instruction Fine-tuning",
author = "Ren, Mengjie and
Cao, Boxi and
Lin, Hongyu and
Liu, Cao and
Han, Xianpei and
Zeng, Ke and
Guanglu, Wan and
Cai, Xunliang and
Sun, Le",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.330/",
doi = "10.18653/v1/2024.acl-long.330",
pages = "6090--6105",
abstract = "Instruction Fine-tuning (IFT) is a crucial phase in building large language models (LLMs). Previous works mainly focus on the IFT`s role in the transfer of behavioral norms and the learning of additional world knowledge. However, the understanding of the underlying mechanisms of IFT remains significantly limited. In this paper, we design a knowledge intervention framework to decouple the potential underlying factors of IFT, thereby enabling individual analysis of different factors. Surprisingly, our experiments reveal that attempting to learn additional world knowledge through IFT often struggles to yield positive impacts and can even lead to markedly negative effects. Further, we discover that maintaining internal knowledge consistency before and after IFT is a critical factor for achieving successful IFT. Our findings reveal the underlying mechanisms of IFT and provide robust support for some very recent and potential future works."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ren-etal-2024-learning">
<titleInfo>
<title>Learning or Self-aligning? Rethinking Instruction Fine-tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengjie</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boxi</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wan</namePart>
<namePart type="family">Guanglu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xunliang</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Le</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Instruction Fine-tuning (IFT) is a crucial phase in building large language models (LLMs). Previous works mainly focus on the IFT‘s role in the transfer of behavioral norms and the learning of additional world knowledge. However, the understanding of the underlying mechanisms of IFT remains significantly limited. In this paper, we design a knowledge intervention framework to decouple the potential underlying factors of IFT, thereby enabling individual analysis of different factors. Surprisingly, our experiments reveal that attempting to learn additional world knowledge through IFT often struggles to yield positive impacts and can even lead to markedly negative effects. Further, we discover that maintaining internal knowledge consistency before and after IFT is a critical factor for achieving successful IFT. Our findings reveal the underlying mechanisms of IFT and provide robust support for some very recent and potential future works.</abstract>
<identifier type="citekey">ren-etal-2024-learning</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.330</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.330/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6090</start>
<end>6105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning or Self-aligning? Rethinking Instruction Fine-tuning
%A Ren, Mengjie
%A Cao, Boxi
%A Lin, Hongyu
%A Liu, Cao
%A Han, Xianpei
%A Zeng, Ke
%A Guanglu, Wan
%A Cai, Xunliang
%A Sun, Le
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ren-etal-2024-learning
%X Instruction Fine-tuning (IFT) is a crucial phase in building large language models (LLMs). Previous works mainly focus on the IFT‘s role in the transfer of behavioral norms and the learning of additional world knowledge. However, the understanding of the underlying mechanisms of IFT remains significantly limited. In this paper, we design a knowledge intervention framework to decouple the potential underlying factors of IFT, thereby enabling individual analysis of different factors. Surprisingly, our experiments reveal that attempting to learn additional world knowledge through IFT often struggles to yield positive impacts and can even lead to markedly negative effects. Further, we discover that maintaining internal knowledge consistency before and after IFT is a critical factor for achieving successful IFT. Our findings reveal the underlying mechanisms of IFT and provide robust support for some very recent and potential future works.
%R 10.18653/v1/2024.acl-long.330
%U https://aclanthology.org/2024.luhme-long.330/
%U https://doi.org/10.18653/v1/2024.acl-long.330
%P 6090-6105
Markdown (Informal)
[Learning or Self-aligning? Rethinking Instruction Fine-tuning](https://aclanthology.org/2024.luhme-long.330/) (Ren et al., ACL 2024)
ACL
- Mengjie Ren, Boxi Cao, Hongyu Lin, Cao Liu, Xianpei Han, Ke Zeng, Wan Guanglu, Xunliang Cai, and Le Sun. 2024. Learning or Self-aligning? Rethinking Instruction Fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6090–6105, Bangkok, Thailand. Association for Computational Linguistics.