@inproceedings{cai-etal-2024-difinet,
title = "{D}i{F}i{N}et: Boundary-Aware Semantic Differentiation and Filtration Network for Nested Named Entity Recognition",
author = "Cai, Yuxiang and
Liu, Qiao and
Gan, Yanglei and
Lin, Run and
Li, Changlin and
Liu, Xueyi and
Luo, Da and
JiayeYang, JiayeYang",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.349/",
doi = "10.18653/v1/2024.acl-long.349",
pages = "6455--6471",
abstract = "Nested Named Entity Recognition (Nested NER) entails identifying and classifying entity spans within the text, including the detection of named entities that are embedded within external entities. Prior approaches primarily employ span-based techniques, utilizing the power of exhaustive searches to address the challenge of overlapping entities. Nonetheless, these methods often grapple with the absence of explicit guidance for boundary detection, resulting insensitivity in discerning minor variations within nested spans. To this end, we propose a Boundary-aware Semantic $\underline{Di}$fferentiation and $\underline{Fi}$ltration $\underline{Net}$work (DiFiNet) tailored for nested NER. Specifically, DiFiNet leverages a biaffine attention mechanism to generate a span representation matrix. This matrix undergoes further refinement through a self-adaptive semantic differentiation module, specifically engineered to discern semantic variances across spans. Furthermore, DiFiNet integrates a boundary filtration module, designed to mitigate the impact of non-entity noise by leveraging semantic relations among spans. Extensive experiments on three benchmark datasets demonstrate our model yields a new state-of-the-art performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cai-etal-2024-difinet">
<titleInfo>
<title>DiFiNet: Boundary-Aware Semantic Differentiation and Filtration Network for Nested Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuxiang</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanglei</namePart>
<namePart type="family">Gan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Run</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changlin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xueyi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Da</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JiayeYang</namePart>
<namePart type="family">JiayeYang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Nested Named Entity Recognition (Nested NER) entails identifying and classifying entity spans within the text, including the detection of named entities that are embedded within external entities. Prior approaches primarily employ span-based techniques, utilizing the power of exhaustive searches to address the challenge of overlapping entities. Nonetheless, these methods often grapple with the absence of explicit guidance for boundary detection, resulting insensitivity in discerning minor variations within nested spans. To this end, we propose a Boundary-aware Semantic \underlineDifferentiation and \underlineFiltration \underlineNetwork (DiFiNet) tailored for nested NER. Specifically, DiFiNet leverages a biaffine attention mechanism to generate a span representation matrix. This matrix undergoes further refinement through a self-adaptive semantic differentiation module, specifically engineered to discern semantic variances across spans. Furthermore, DiFiNet integrates a boundary filtration module, designed to mitigate the impact of non-entity noise by leveraging semantic relations among spans. Extensive experiments on three benchmark datasets demonstrate our model yields a new state-of-the-art performance.</abstract>
<identifier type="citekey">cai-etal-2024-difinet</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.349</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.349/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6455</start>
<end>6471</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DiFiNet: Boundary-Aware Semantic Differentiation and Filtration Network for Nested Named Entity Recognition
%A Cai, Yuxiang
%A Liu, Qiao
%A Gan, Yanglei
%A Lin, Run
%A Li, Changlin
%A Liu, Xueyi
%A Luo, Da
%A JiayeYang, JiayeYang
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F cai-etal-2024-difinet
%X Nested Named Entity Recognition (Nested NER) entails identifying and classifying entity spans within the text, including the detection of named entities that are embedded within external entities. Prior approaches primarily employ span-based techniques, utilizing the power of exhaustive searches to address the challenge of overlapping entities. Nonetheless, these methods often grapple with the absence of explicit guidance for boundary detection, resulting insensitivity in discerning minor variations within nested spans. To this end, we propose a Boundary-aware Semantic \underlineDifferentiation and \underlineFiltration \underlineNetwork (DiFiNet) tailored for nested NER. Specifically, DiFiNet leverages a biaffine attention mechanism to generate a span representation matrix. This matrix undergoes further refinement through a self-adaptive semantic differentiation module, specifically engineered to discern semantic variances across spans. Furthermore, DiFiNet integrates a boundary filtration module, designed to mitigate the impact of non-entity noise by leveraging semantic relations among spans. Extensive experiments on three benchmark datasets demonstrate our model yields a new state-of-the-art performance.
%R 10.18653/v1/2024.acl-long.349
%U https://aclanthology.org/2024.luhme-long.349/
%U https://doi.org/10.18653/v1/2024.acl-long.349
%P 6455-6471
Markdown (Informal)
[DiFiNet: Boundary-Aware Semantic Differentiation and Filtration Network for Nested Named Entity Recognition](https://aclanthology.org/2024.luhme-long.349/) (Cai et al., ACL 2024)
ACL
- Yuxiang Cai, Qiao Liu, Yanglei Gan, Run Lin, Changlin Li, Xueyi Liu, Da Luo, and JiayeYang JiayeYang. 2024. DiFiNet: Boundary-Aware Semantic Differentiation and Filtration Network for Nested Named Entity Recognition. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6455–6471, Bangkok, Thailand. Association for Computational Linguistics.