@inproceedings{feng-etal-2024-legal,
title = "Legal Case Retrieval: A Survey of the State of the Art",
author = "Feng, Yi and
Li, Chuanyi and
Ng, Vincent",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.350/",
doi = "10.18653/v1/2024.acl-long.350",
pages = "6472--6485",
abstract = "Recent years have seen increasing attention on Legal Case Retrieval (LCR), a key task in the area of Legal AI that concerns the retrieval of cases from a large legal database of historical cases that are similar to a given query. This paper presents a survey of the major milestones made in LCR research, targeting researchers who are finding their way into the field and seek a brief account of the relevant datasets and the recent neural models and their performances."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="feng-etal-2024-legal">
<titleInfo>
<title>Legal Case Retrieval: A Survey of the State of the Art</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuanyi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent years have seen increasing attention on Legal Case Retrieval (LCR), a key task in the area of Legal AI that concerns the retrieval of cases from a large legal database of historical cases that are similar to a given query. This paper presents a survey of the major milestones made in LCR research, targeting researchers who are finding their way into the field and seek a brief account of the relevant datasets and the recent neural models and their performances.</abstract>
<identifier type="citekey">feng-etal-2024-legal</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.350</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.350/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6472</start>
<end>6485</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Legal Case Retrieval: A Survey of the State of the Art
%A Feng, Yi
%A Li, Chuanyi
%A Ng, Vincent
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F feng-etal-2024-legal
%X Recent years have seen increasing attention on Legal Case Retrieval (LCR), a key task in the area of Legal AI that concerns the retrieval of cases from a large legal database of historical cases that are similar to a given query. This paper presents a survey of the major milestones made in LCR research, targeting researchers who are finding their way into the field and seek a brief account of the relevant datasets and the recent neural models and their performances.
%R 10.18653/v1/2024.acl-long.350
%U https://aclanthology.org/2024.luhme-long.350/
%U https://doi.org/10.18653/v1/2024.acl-long.350
%P 6472-6485
Markdown (Informal)
[Legal Case Retrieval: A Survey of the State of the Art](https://aclanthology.org/2024.luhme-long.350/) (Feng et al., ACL 2024)
ACL
- Yi Feng, Chuanyi Li, and Vincent Ng. 2024. Legal Case Retrieval: A Survey of the State of the Art. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6472–6485, Bangkok, Thailand. Association for Computational Linguistics.