@inproceedings{devasier-etal-2024-robust,
title = "Robust Frame-Semantic Models with Lexical Unit Trees and Negative Samples",
author = "Devasier, Jacob and
Gurjar, Yogesh and
Li, Chengkai",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.374/",
doi = "10.18653/v1/2024.acl-long.374",
pages = "6930--6941",
abstract = "We present novel advancements in frame-semantic parsing, specifically focusing on target identification and frame identification. Our target identification model employs a novel prefix tree modification to enable robust support for multi-word lexical units, resulting in a coverage of 99.4{\%} of the targets in the FrameNet 1.7 fulltext annotations. It utilizes a RoBERTa-based filter to achieve an F1 score of 0.775, surpassing the previous state-of-the-art solution by +0.012. For frame identification, we introduce a modification to the standard multiple-choice classification paradigm by incorporating additional negative frames for targets with limited candidate frames, resulting in a +0.014 accuracy improvement over the frame-only model of FIDO, the previous state-of-the-art system, and +0.002 over its full system. Our approach significantly enhances performance on rare frames, exhibiting an improvement of +0.044 over FIDO`s accuracy on frames with 5 or fewer samples, and on under-utilized frames, with an improvement of +0.139 on targets with a single candidate frame. Overall, our contributions address critical challenges and advance the state-of-the-art in frame-semantic parsing."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="devasier-etal-2024-robust">
<titleInfo>
<title>Robust Frame-Semantic Models with Lexical Unit Trees and Negative Samples</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Devasier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yogesh</namePart>
<namePart type="family">Gurjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengkai</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present novel advancements in frame-semantic parsing, specifically focusing on target identification and frame identification. Our target identification model employs a novel prefix tree modification to enable robust support for multi-word lexical units, resulting in a coverage of 99.4% of the targets in the FrameNet 1.7 fulltext annotations. It utilizes a RoBERTa-based filter to achieve an F1 score of 0.775, surpassing the previous state-of-the-art solution by +0.012. For frame identification, we introduce a modification to the standard multiple-choice classification paradigm by incorporating additional negative frames for targets with limited candidate frames, resulting in a +0.014 accuracy improvement over the frame-only model of FIDO, the previous state-of-the-art system, and +0.002 over its full system. Our approach significantly enhances performance on rare frames, exhibiting an improvement of +0.044 over FIDO‘s accuracy on frames with 5 or fewer samples, and on under-utilized frames, with an improvement of +0.139 on targets with a single candidate frame. Overall, our contributions address critical challenges and advance the state-of-the-art in frame-semantic parsing.</abstract>
<identifier type="citekey">devasier-etal-2024-robust</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.374</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.374/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6930</start>
<end>6941</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Robust Frame-Semantic Models with Lexical Unit Trees and Negative Samples
%A Devasier, Jacob
%A Gurjar, Yogesh
%A Li, Chengkai
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F devasier-etal-2024-robust
%X We present novel advancements in frame-semantic parsing, specifically focusing on target identification and frame identification. Our target identification model employs a novel prefix tree modification to enable robust support for multi-word lexical units, resulting in a coverage of 99.4% of the targets in the FrameNet 1.7 fulltext annotations. It utilizes a RoBERTa-based filter to achieve an F1 score of 0.775, surpassing the previous state-of-the-art solution by +0.012. For frame identification, we introduce a modification to the standard multiple-choice classification paradigm by incorporating additional negative frames for targets with limited candidate frames, resulting in a +0.014 accuracy improvement over the frame-only model of FIDO, the previous state-of-the-art system, and +0.002 over its full system. Our approach significantly enhances performance on rare frames, exhibiting an improvement of +0.044 over FIDO‘s accuracy on frames with 5 or fewer samples, and on under-utilized frames, with an improvement of +0.139 on targets with a single candidate frame. Overall, our contributions address critical challenges and advance the state-of-the-art in frame-semantic parsing.
%R 10.18653/v1/2024.acl-long.374
%U https://aclanthology.org/2024.luhme-long.374/
%U https://doi.org/10.18653/v1/2024.acl-long.374
%P 6930-6941
Markdown (Informal)
[Robust Frame-Semantic Models with Lexical Unit Trees and Negative Samples](https://aclanthology.org/2024.luhme-long.374/) (Devasier et al., ACL 2024)
ACL