@inproceedings{voas-etal-2024-multimodal,
title = "Multimodal Contextualized Semantic Parsing from Speech",
author = "Voas, Jordan and
Harwath, David and
Mooney, Ray",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.398/",
doi = "10.18653/v1/2024.acl-long.398",
pages = "7354--7369",
abstract = "We introduce Semantic Parsing in Contextual Environments (SPICE), a task designed to enhance artificial agents' contextual awareness by integrating multimodal inputs with prior contexts. SPICE goes beyond traditional semantic parsing by offering a structured, interpretable framework for dynamically updating an agent`s knowledge with new information, mirroring the complexity of human communication. We develop the VG-SPICE dataset, crafted to challenge agents with visual scene graph construction from spoken conversational exchanges, highlighting speech and visual data integration. We also present the Audio-Vision Dialogue Scene Parser (AViD-SP) developed for use on VG-SPICE. These innovations aim to improve multimodal information processing and integration. Both the VG-SPICE dataset and the AViD-SP model are publicly available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="voas-etal-2024-multimodal">
<titleInfo>
<title>Multimodal Contextualized Semantic Parsing from Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Voas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Harwath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ray</namePart>
<namePart type="family">Mooney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce Semantic Parsing in Contextual Environments (SPICE), a task designed to enhance artificial agents’ contextual awareness by integrating multimodal inputs with prior contexts. SPICE goes beyond traditional semantic parsing by offering a structured, interpretable framework for dynamically updating an agent‘s knowledge with new information, mirroring the complexity of human communication. We develop the VG-SPICE dataset, crafted to challenge agents with visual scene graph construction from spoken conversational exchanges, highlighting speech and visual data integration. We also present the Audio-Vision Dialogue Scene Parser (AViD-SP) developed for use on VG-SPICE. These innovations aim to improve multimodal information processing and integration. Both the VG-SPICE dataset and the AViD-SP model are publicly available.</abstract>
<identifier type="citekey">voas-etal-2024-multimodal</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.398</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.398/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>7354</start>
<end>7369</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Contextualized Semantic Parsing from Speech
%A Voas, Jordan
%A Harwath, David
%A Mooney, Ray
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F voas-etal-2024-multimodal
%X We introduce Semantic Parsing in Contextual Environments (SPICE), a task designed to enhance artificial agents’ contextual awareness by integrating multimodal inputs with prior contexts. SPICE goes beyond traditional semantic parsing by offering a structured, interpretable framework for dynamically updating an agent‘s knowledge with new information, mirroring the complexity of human communication. We develop the VG-SPICE dataset, crafted to challenge agents with visual scene graph construction from spoken conversational exchanges, highlighting speech and visual data integration. We also present the Audio-Vision Dialogue Scene Parser (AViD-SP) developed for use on VG-SPICE. These innovations aim to improve multimodal information processing and integration. Both the VG-SPICE dataset and the AViD-SP model are publicly available.
%R 10.18653/v1/2024.acl-long.398
%U https://aclanthology.org/2024.luhme-long.398/
%U https://doi.org/10.18653/v1/2024.acl-long.398
%P 7354-7369
Markdown (Informal)
[Multimodal Contextualized Semantic Parsing from Speech](https://aclanthology.org/2024.luhme-long.398/) (Voas et al., ACL 2024)
ACL
- Jordan Voas, David Harwath, and Ray Mooney. 2024. Multimodal Contextualized Semantic Parsing from Speech. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7354–7369, Bangkok, Thailand. Association for Computational Linguistics.