Parallel Structures in Pre-training Data Yield In-Context Learning

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, He He


Abstract
Pre-trained language models (LMs) are capable of in-context learning (ICL): they can adapt to a task with only a few examples given in the prompt without any parameter update. However, it is unclear where this capability comes from as there is a stark distribution shift between pre-training text and ICL prompts. In this work, we study what patterns of the pre-training data contribute to ICL. We find that LMs’ ICL ability depends on parallel structures in the pre-training data—pairs of phrases following similar templates in the same context window. Specifically, we detect parallel structures by checking whether training on one phrase improves prediction of the other, and conduct ablation experiments to study their effect on ICL. We show that removing parallel structures in the pre-training data reduces LMs’ ICL accuracy by 51% (vs 2% from random ablation). This drop persists even when excluding common patterns such as n-gram repetitions and long-range dependency, showing the diversity and generality of parallel structures. A closer look at the detected parallel structures indicates that they cover diverse linguistic tasks and span long distances in the data.
Anthology ID:
2024.luhme-long.465
Volume:
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Lun-Wei Ku, Andre Martins, Vivek Srikumar
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
8582–8592
Language:
URL:
https://aclanthology.org/2024.luhme-long.465/
DOI:
10.18653/v1/2024.acl-long.465
Bibkey:
Cite (ACL):
Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. 2024. Parallel Structures in Pre-training Data Yield In-Context Learning. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8582–8592, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
Parallel Structures in Pre-training Data Yield In-Context Learning (Chen et al., ACL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.acl-long.465.pdf