@inproceedings{guo-etal-2024-decoder,
title = "Decoder-only Streaming Transformer for Simultaneous Translation",
author = "Guo, Shoutao and
Zhang, Shaolei and
Feng, Yang",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.480/",
doi = "10.18653/v1/2024.acl-long.480",
pages = "8851--8864",
abstract = "Simultaneous Machine Translation (SiMT) generates translation while reading source tokens, essentially producing the target prefix based on the source prefix. To achieve good performance, it leverages the relationship between source and target prefixes to exact a policy to guide the generation of translations. Although existing SiMT methods primarily focus on the Encoder-Decoder architecture, we explore the potential of Decoder-only architecture, owing to its superior performance in various tasks and its inherent compatibility with SiMT. However, directly applying the Decoder-only architecture to SiMT poses challenges in terms of training and inference. To alleviate the above problems, we propose the first Decoder-only SiMT model, named Decoder-only Streaming Transformer (DST). Specifically, DST separately encodes the positions of the source and target prefixes, ensuring that the position of the target prefix remains unaffected by the expansion of the source prefix. Furthermore, we propose a Streaming Self-Attention (SSA) mechanism tailored for the Decoder-only architecture. It is capable of obtaining translation policy by assessing the sufficiency of input source information and integrating with the soft-attention mechanism to generate translations. Experiments demonstrate that our approach achieves state-of-the-art performance on three translation tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-etal-2024-decoder">
<titleInfo>
<title>Decoder-only Streaming Transformer for Simultaneous Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shoutao</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaolei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Simultaneous Machine Translation (SiMT) generates translation while reading source tokens, essentially producing the target prefix based on the source prefix. To achieve good performance, it leverages the relationship between source and target prefixes to exact a policy to guide the generation of translations. Although existing SiMT methods primarily focus on the Encoder-Decoder architecture, we explore the potential of Decoder-only architecture, owing to its superior performance in various tasks and its inherent compatibility with SiMT. However, directly applying the Decoder-only architecture to SiMT poses challenges in terms of training and inference. To alleviate the above problems, we propose the first Decoder-only SiMT model, named Decoder-only Streaming Transformer (DST). Specifically, DST separately encodes the positions of the source and target prefixes, ensuring that the position of the target prefix remains unaffected by the expansion of the source prefix. Furthermore, we propose a Streaming Self-Attention (SSA) mechanism tailored for the Decoder-only architecture. It is capable of obtaining translation policy by assessing the sufficiency of input source information and integrating with the soft-attention mechanism to generate translations. Experiments demonstrate that our approach achieves state-of-the-art performance on three translation tasks.</abstract>
<identifier type="citekey">guo-etal-2024-decoder</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.480</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.480/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>8851</start>
<end>8864</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Decoder-only Streaming Transformer for Simultaneous Translation
%A Guo, Shoutao
%A Zhang, Shaolei
%A Feng, Yang
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F guo-etal-2024-decoder
%X Simultaneous Machine Translation (SiMT) generates translation while reading source tokens, essentially producing the target prefix based on the source prefix. To achieve good performance, it leverages the relationship between source and target prefixes to exact a policy to guide the generation of translations. Although existing SiMT methods primarily focus on the Encoder-Decoder architecture, we explore the potential of Decoder-only architecture, owing to its superior performance in various tasks and its inherent compatibility with SiMT. However, directly applying the Decoder-only architecture to SiMT poses challenges in terms of training and inference. To alleviate the above problems, we propose the first Decoder-only SiMT model, named Decoder-only Streaming Transformer (DST). Specifically, DST separately encodes the positions of the source and target prefixes, ensuring that the position of the target prefix remains unaffected by the expansion of the source prefix. Furthermore, we propose a Streaming Self-Attention (SSA) mechanism tailored for the Decoder-only architecture. It is capable of obtaining translation policy by assessing the sufficiency of input source information and integrating with the soft-attention mechanism to generate translations. Experiments demonstrate that our approach achieves state-of-the-art performance on three translation tasks.
%R 10.18653/v1/2024.acl-long.480
%U https://aclanthology.org/2024.luhme-long.480/
%U https://doi.org/10.18653/v1/2024.acl-long.480
%P 8851-8864
Markdown (Informal)
[Decoder-only Streaming Transformer for Simultaneous Translation](https://aclanthology.org/2024.luhme-long.480/) (Guo et al., ACL 2024)
ACL