@inproceedings{latouche-etal-2024-binaryalign,
title = "{B}inary{A}lign: Word Alignment as Binary Sequence Labeling",
author = "Latouche, Gaetan and
Carbonneau, Marc-Andr{\'e} and
Swanson, Benjamin",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.553/",
doi = "10.18653/v1/2024.acl-long.553",
pages = "10277--10288",
abstract = "Real world deployments of word alignment are almost certain to cover both high and low resource languages. However, the state-of-the-art for this task recommends a different model class depending on the availability of gold alignment training data for a particular language pair. We propose BinaryAlign, a novel word alignment technique based on binary sequence labeling that outperforms existing approaches in both scenarios, offering a unifying approach to the task. Additionally, we vary the specific choice of multilingual foundation model, perform stratified error analysis over alignment error type, and explore the performance of BinaryAlign on non-English language pairs. We make our source code publicly available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="latouche-etal-2024-binaryalign">
<titleInfo>
<title>BinaryAlign: Word Alignment as Binary Sequence Labeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gaetan</namePart>
<namePart type="family">Latouche</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc-André</namePart>
<namePart type="family">Carbonneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Swanson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Real world deployments of word alignment are almost certain to cover both high and low resource languages. However, the state-of-the-art for this task recommends a different model class depending on the availability of gold alignment training data for a particular language pair. We propose BinaryAlign, a novel word alignment technique based on binary sequence labeling that outperforms existing approaches in both scenarios, offering a unifying approach to the task. Additionally, we vary the specific choice of multilingual foundation model, perform stratified error analysis over alignment error type, and explore the performance of BinaryAlign on non-English language pairs. We make our source code publicly available.</abstract>
<identifier type="citekey">latouche-etal-2024-binaryalign</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.553</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.553/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10277</start>
<end>10288</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BinaryAlign: Word Alignment as Binary Sequence Labeling
%A Latouche, Gaetan
%A Carbonneau, Marc-André
%A Swanson, Benjamin
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F latouche-etal-2024-binaryalign
%X Real world deployments of word alignment are almost certain to cover both high and low resource languages. However, the state-of-the-art for this task recommends a different model class depending on the availability of gold alignment training data for a particular language pair. We propose BinaryAlign, a novel word alignment technique based on binary sequence labeling that outperforms existing approaches in both scenarios, offering a unifying approach to the task. Additionally, we vary the specific choice of multilingual foundation model, perform stratified error analysis over alignment error type, and explore the performance of BinaryAlign on non-English language pairs. We make our source code publicly available.
%R 10.18653/v1/2024.acl-long.553
%U https://aclanthology.org/2024.luhme-long.553/
%U https://doi.org/10.18653/v1/2024.acl-long.553
%P 10277-10288
Markdown (Informal)
[BinaryAlign: Word Alignment as Binary Sequence Labeling](https://aclanthology.org/2024.luhme-long.553/) (Latouche et al., ACL 2024)
ACL
- Gaetan Latouche, Marc-André Carbonneau, and Benjamin Swanson. 2024. BinaryAlign: Word Alignment as Binary Sequence Labeling. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10277–10288, Bangkok, Thailand. Association for Computational Linguistics.