@inproceedings{liu-etal-2024-aligning,
title = "Aligning Large Language Models with Human Preferences through Representation Engineering",
author = "Liu, Wenhao and
Wang, Xiaohua and
Wu, Muling and
Li, Tianlong and
Lv, Changze and
Ling, Zixuan and
JianHao, Zhu and
Zhang, Cenyuan and
Zheng, Xiaoqing and
Huang, Xuanjing",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.572/",
doi = "10.18653/v1/2024.acl-long.572",
pages = "10619--10638",
abstract = "Aligning large language models (LLMs) with human preferences is crucial for enhancing their utility in terms of helpfulness, truthfulness, safety, harmlessness, and interestingness. Existing methods for achieving this alignment often involve employing reinforcement learning from human feedback (RLHF) to fine-tune LLMs based on human labels assessing the relative quality of model responses. Nevertheless, RLHF is susceptible to instability during fine-tuning and presents challenges in implementation. Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM and achieve precise control of model behavior by transforming its representations. This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement. Extensive experiments demonstrate the efficacy of RAHF in not only capturing but also manipulating representations to align with a broad spectrum of human preferences or values, rather than being confined to a singular concept or function (e.g. honesty or bias). RAHF`s versatility in accommodating diverse human preferences shows its potential for advancing LLM performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2024-aligning">
<titleInfo>
<title>Aligning Large Language Models with Human Preferences through Representation Engineering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenhao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaohua</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muling</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianlong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changze</namePart>
<namePart type="family">Lv</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixuan</namePart>
<namePart type="family">Ling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhu</namePart>
<namePart type="family">JianHao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cenyuan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoqing</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Aligning large language models (LLMs) with human preferences is crucial for enhancing their utility in terms of helpfulness, truthfulness, safety, harmlessness, and interestingness. Existing methods for achieving this alignment often involve employing reinforcement learning from human feedback (RLHF) to fine-tune LLMs based on human labels assessing the relative quality of model responses. Nevertheless, RLHF is susceptible to instability during fine-tuning and presents challenges in implementation. Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM and achieve precise control of model behavior by transforming its representations. This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement. Extensive experiments demonstrate the efficacy of RAHF in not only capturing but also manipulating representations to align with a broad spectrum of human preferences or values, rather than being confined to a singular concept or function (e.g. honesty or bias). RAHF‘s versatility in accommodating diverse human preferences shows its potential for advancing LLM performance.</abstract>
<identifier type="citekey">liu-etal-2024-aligning</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.572</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.572/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10619</start>
<end>10638</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Aligning Large Language Models with Human Preferences through Representation Engineering
%A Liu, Wenhao
%A Wang, Xiaohua
%A Wu, Muling
%A Li, Tianlong
%A Lv, Changze
%A Ling, Zixuan
%A JianHao, Zhu
%A Zhang, Cenyuan
%A Zheng, Xiaoqing
%A Huang, Xuanjing
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F liu-etal-2024-aligning
%X Aligning large language models (LLMs) with human preferences is crucial for enhancing their utility in terms of helpfulness, truthfulness, safety, harmlessness, and interestingness. Existing methods for achieving this alignment often involve employing reinforcement learning from human feedback (RLHF) to fine-tune LLMs based on human labels assessing the relative quality of model responses. Nevertheless, RLHF is susceptible to instability during fine-tuning and presents challenges in implementation. Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM and achieve precise control of model behavior by transforming its representations. This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement. Extensive experiments demonstrate the efficacy of RAHF in not only capturing but also manipulating representations to align with a broad spectrum of human preferences or values, rather than being confined to a singular concept or function (e.g. honesty or bias). RAHF‘s versatility in accommodating diverse human preferences shows its potential for advancing LLM performance.
%R 10.18653/v1/2024.acl-long.572
%U https://aclanthology.org/2024.luhme-long.572/
%U https://doi.org/10.18653/v1/2024.acl-long.572
%P 10619-10638
Markdown (Informal)
[Aligning Large Language Models with Human Preferences through Representation Engineering](https://aclanthology.org/2024.luhme-long.572/) (Liu et al., ACL 2024)
ACL
- Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li, Changze Lv, Zixuan Ling, Zhu JianHao, Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024. Aligning Large Language Models with Human Preferences through Representation Engineering. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10619–10638, Bangkok, Thailand. Association for Computational Linguistics.