@inproceedings{li-etal-2024-dawn,
title = "The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models",
author = "Li, Junyi and
Chen, Jie and
Ren, Ruiyang and
Cheng, Xiaoxue and
Zhao, Xin and
Nie, Jian-Yun and
Wen, Ji-Rong",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.586/",
doi = "10.18653/v1/2024.acl-long.586",
pages = "10879--10899",
abstract = "In the era of large language models (LLMs), hallucination (the tendency to generate factually incorrect content) poses great challenges to trustworthy and reliable deployment of LLMs in real-world applications. To tackle the hallucination, three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them (mitigation). To address these challenges, this work presents a systematic empirical study on LLM hallucinations, focused on the three aspects of hallucination detection, source and mitigation. Specially, we construct a new hallucination benchmark HaluEval 2.0, and design a simple yet effective detection method for LLM hallucinations. Furthermore, we zoom into the different training or utilization stages of LLMs and extensively analyze the potential factors that lead to the LLM hallucinations. Finally, we implement and examine a series of widely used techniques to mitigate the hallucinations in LLMs. Our work has led to several important findings to understand the hallucination origin and mitigate the hallucinations in LLMs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-dawn">
<titleInfo>
<title>The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruiyang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoxue</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian-Yun</namePart>
<namePart type="family">Nie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji-Rong</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the era of large language models (LLMs), hallucination (the tendency to generate factually incorrect content) poses great challenges to trustworthy and reliable deployment of LLMs in real-world applications. To tackle the hallucination, three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them (mitigation). To address these challenges, this work presents a systematic empirical study on LLM hallucinations, focused on the three aspects of hallucination detection, source and mitigation. Specially, we construct a new hallucination benchmark HaluEval 2.0, and design a simple yet effective detection method for LLM hallucinations. Furthermore, we zoom into the different training or utilization stages of LLMs and extensively analyze the potential factors that lead to the LLM hallucinations. Finally, we implement and examine a series of widely used techniques to mitigate the hallucinations in LLMs. Our work has led to several important findings to understand the hallucination origin and mitigate the hallucinations in LLMs.</abstract>
<identifier type="citekey">li-etal-2024-dawn</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.586</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.586/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10879</start>
<end>10899</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models
%A Li, Junyi
%A Chen, Jie
%A Ren, Ruiyang
%A Cheng, Xiaoxue
%A Zhao, Xin
%A Nie, Jian-Yun
%A Wen, Ji-Rong
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F li-etal-2024-dawn
%X In the era of large language models (LLMs), hallucination (the tendency to generate factually incorrect content) poses great challenges to trustworthy and reliable deployment of LLMs in real-world applications. To tackle the hallucination, three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them (mitigation). To address these challenges, this work presents a systematic empirical study on LLM hallucinations, focused on the three aspects of hallucination detection, source and mitigation. Specially, we construct a new hallucination benchmark HaluEval 2.0, and design a simple yet effective detection method for LLM hallucinations. Furthermore, we zoom into the different training or utilization stages of LLMs and extensively analyze the potential factors that lead to the LLM hallucinations. Finally, we implement and examine a series of widely used techniques to mitigate the hallucinations in LLMs. Our work has led to several important findings to understand the hallucination origin and mitigate the hallucinations in LLMs.
%R 10.18653/v1/2024.acl-long.586
%U https://aclanthology.org/2024.luhme-long.586/
%U https://doi.org/10.18653/v1/2024.acl-long.586
%P 10879-10899
Markdown (Informal)
[The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models](https://aclanthology.org/2024.luhme-long.586/) (Li et al., ACL 2024)
ACL