@inproceedings{zhong-etal-2024-actionie,
title = "{A}ction{IE}: Action Extraction from Scientific Literature with Programming Languages",
author = "Zhong, Xianrui and
Du, Yufeng and
Ouyang, Siru and
Zhong, Ming and
Luo, Tingfeng and
Ho, Qirong and
Peng, Hao and
Ji, Heng and
Han, Jiawei",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.683/",
doi = "10.18653/v1/2024.acl-long.683",
pages = "12656--12671",
abstract = "Extraction of experimental procedures from human language in scientific literature and patents into actionable sequences in robotics language holds immense significance in scientific domains. Such an action extraction task is particularly challenging given the intricate details and context-dependent nature of the instructions, especially in fields like chemistry where reproducibility is paramount. In this paper, we introduce ActionIE, a method that leverages Large Language Models (LLMs) to bridge this divide by converting actions written in natural language into executable Python code. This enables us to capture the entities of interest, and the relationship between each action, given the features of Programming Languages. Utilizing linguistic cues identified by frequent patterns, ActionIE provides an improved mechanism to discern entities of interest. While our method is broadly applicable, we exemplify its power in the domain of chemical literature, wherein we focus on extracting experimental procedures for chemical synthesis. The code generated by our method can be easily transformed into robotics language which is in high demand in scientific fields. Comprehensive experiments demonstrate the superiority of our method. In addition, we propose a graph-based metric to more accurately reflect the precision of extraction. We also develop a dataset to address the scarcity of scientific literature occurred in existing datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhong-etal-2024-actionie">
<titleInfo>
<title>ActionIE: Action Extraction from Scientific Literature with Programming Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xianrui</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufeng</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siru</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tingfeng</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qirong</namePart>
<namePart type="family">Ho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Extraction of experimental procedures from human language in scientific literature and patents into actionable sequences in robotics language holds immense significance in scientific domains. Such an action extraction task is particularly challenging given the intricate details and context-dependent nature of the instructions, especially in fields like chemistry where reproducibility is paramount. In this paper, we introduce ActionIE, a method that leverages Large Language Models (LLMs) to bridge this divide by converting actions written in natural language into executable Python code. This enables us to capture the entities of interest, and the relationship between each action, given the features of Programming Languages. Utilizing linguistic cues identified by frequent patterns, ActionIE provides an improved mechanism to discern entities of interest. While our method is broadly applicable, we exemplify its power in the domain of chemical literature, wherein we focus on extracting experimental procedures for chemical synthesis. The code generated by our method can be easily transformed into robotics language which is in high demand in scientific fields. Comprehensive experiments demonstrate the superiority of our method. In addition, we propose a graph-based metric to more accurately reflect the precision of extraction. We also develop a dataset to address the scarcity of scientific literature occurred in existing datasets.</abstract>
<identifier type="citekey">zhong-etal-2024-actionie</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.683</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.683/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>12656</start>
<end>12671</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ActionIE: Action Extraction from Scientific Literature with Programming Languages
%A Zhong, Xianrui
%A Du, Yufeng
%A Ouyang, Siru
%A Zhong, Ming
%A Luo, Tingfeng
%A Ho, Qirong
%A Peng, Hao
%A Ji, Heng
%A Han, Jiawei
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zhong-etal-2024-actionie
%X Extraction of experimental procedures from human language in scientific literature and patents into actionable sequences in robotics language holds immense significance in scientific domains. Such an action extraction task is particularly challenging given the intricate details and context-dependent nature of the instructions, especially in fields like chemistry where reproducibility is paramount. In this paper, we introduce ActionIE, a method that leverages Large Language Models (LLMs) to bridge this divide by converting actions written in natural language into executable Python code. This enables us to capture the entities of interest, and the relationship between each action, given the features of Programming Languages. Utilizing linguistic cues identified by frequent patterns, ActionIE provides an improved mechanism to discern entities of interest. While our method is broadly applicable, we exemplify its power in the domain of chemical literature, wherein we focus on extracting experimental procedures for chemical synthesis. The code generated by our method can be easily transformed into robotics language which is in high demand in scientific fields. Comprehensive experiments demonstrate the superiority of our method. In addition, we propose a graph-based metric to more accurately reflect the precision of extraction. We also develop a dataset to address the scarcity of scientific literature occurred in existing datasets.
%R 10.18653/v1/2024.acl-long.683
%U https://aclanthology.org/2024.luhme-long.683/
%U https://doi.org/10.18653/v1/2024.acl-long.683
%P 12656-12671
Markdown (Informal)
[ActionIE: Action Extraction from Scientific Literature with Programming Languages](https://aclanthology.org/2024.luhme-long.683/) (Zhong et al., ACL 2024)
ACL
- Xianrui Zhong, Yufeng Du, Siru Ouyang, Ming Zhong, Tingfeng Luo, Qirong Ho, Hao Peng, Heng Ji, and Jiawei Han. 2024. ActionIE: Action Extraction from Scientific Literature with Programming Languages. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12656–12671, Bangkok, Thailand. Association for Computational Linguistics.