XLAVS-R: Cross-Lingual Audio-Visual Speech Representation Learning for Noise-Robust Speech Perception

HyoJung Han, Mohamed Anwar, Juan Pino, Wei-Ning Hsu, Marine Carpuat, Bowen Shi, Changhan Wang


Abstract
Speech recognition and translation systems perform poorly on noisy inputs, which are frequent in realistic environments. Augmenting these systems with visual signals has the potential to improve robustness to noise. However, audio-visual (AV) data is only available in limited amounts and for fewer languages than audio-only resources.To address this gap, we present XLAVS-R, a cross-lingual audio-visual speech representation model for noise-robust speech recognition and translation in over 100 languages. It is designed to maximize the benefits of limited multilingual AV pre-training data, by building on top of audio-only multilingual pre-training and simplifying existing pre-training schemes. Extensive evaluation on the MuAViC benchmark shows the strength of XLAVS-R on downstream audio-visual speech recognition and translation tasks, where it outperforms the previous state of the art by up to 18.5% WER and 4.7 BLEU given noisy AV inputs, and enables strong zero-shot audio-visual ability with audio-only fine-tuning.
Anthology ID:
2024.luhme-long.697
Volume:
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Lun-Wei Ku, Andre Martins, Vivek Srikumar
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
12896–12911
Language:
URL:
https://aclanthology.org/2024.luhme-long.697/
DOI:
10.18653/v1/2024.acl-long.697
Bibkey:
Cite (ACL):
HyoJung Han, Mohamed Anwar, Juan Pino, Wei-Ning Hsu, Marine Carpuat, Bowen Shi, and Changhan Wang. 2024. XLAVS-R: Cross-Lingual Audio-Visual Speech Representation Learning for Noise-Robust Speech Perception. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12896–12911, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
XLAVS-R: Cross-Lingual Audio-Visual Speech Representation Learning for Noise-Robust Speech Perception (Han et al., ACL 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.acl-long.697.pdf