@inproceedings{ross-andreas-2024-toward,
title = "Toward In-Context Teaching: Adapting Examples to Students' Misconceptions",
author = "Ross, Alexis and
Andreas, Jacob",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.718/",
doi = "10.18653/v1/2024.acl-long.718",
pages = "13283--13310",
abstract = "When a teacher provides examples for a student to study, these examples must be informative, enabling a student to progress from their current state toward a target concept or skill. Good teachers must therefore simultaneously infer what students already know and adapt their teaching to students' changing state of knowledge. There is increasing interest in using computational models, particularly large language models, as pedagogical tools. As students, language models in particular have shown a remarkable ability to adapt to new tasks given small numbers of examples. But how effectively can these models adapt as teachers to students of different types? To study this question, we introduce a suite of models and evaluation methods we call AdapT. AdapT has two components: (1) a collection of simulated Bayesian student models that can be used for evaluation of automated teaching methods; (2) a platform for evaluation with human students, to characterize the real-world effectiveness of these methods. We additionally introduce (3) AToM, a new probabilistic method for adaptive teaching that jointly infers students' past beliefs and optimizes for the correctness of future beliefs. In evaluations of simulated students across three learning domains (fraction arithmetic, English morphology, function learning), AToM systematically outperforms LLM-based and standard Bayesian teaching methods. In human experiments, both AToM and LLMs outperform non-adaptive random example selection. Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive methods for solving it."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ross-andreas-2024-toward">
<titleInfo>
<title>Toward In-Context Teaching: Adapting Examples to Students’ Misconceptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Ross</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Andreas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When a teacher provides examples for a student to study, these examples must be informative, enabling a student to progress from their current state toward a target concept or skill. Good teachers must therefore simultaneously infer what students already know and adapt their teaching to students’ changing state of knowledge. There is increasing interest in using computational models, particularly large language models, as pedagogical tools. As students, language models in particular have shown a remarkable ability to adapt to new tasks given small numbers of examples. But how effectively can these models adapt as teachers to students of different types? To study this question, we introduce a suite of models and evaluation methods we call AdapT. AdapT has two components: (1) a collection of simulated Bayesian student models that can be used for evaluation of automated teaching methods; (2) a platform for evaluation with human students, to characterize the real-world effectiveness of these methods. We additionally introduce (3) AToM, a new probabilistic method for adaptive teaching that jointly infers students’ past beliefs and optimizes for the correctness of future beliefs. In evaluations of simulated students across three learning domains (fraction arithmetic, English morphology, function learning), AToM systematically outperforms LLM-based and standard Bayesian teaching methods. In human experiments, both AToM and LLMs outperform non-adaptive random example selection. Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive methods for solving it.</abstract>
<identifier type="citekey">ross-andreas-2024-toward</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.718</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.718/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>13283</start>
<end>13310</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward In-Context Teaching: Adapting Examples to Students’ Misconceptions
%A Ross, Alexis
%A Andreas, Jacob
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ross-andreas-2024-toward
%X When a teacher provides examples for a student to study, these examples must be informative, enabling a student to progress from their current state toward a target concept or skill. Good teachers must therefore simultaneously infer what students already know and adapt their teaching to students’ changing state of knowledge. There is increasing interest in using computational models, particularly large language models, as pedagogical tools. As students, language models in particular have shown a remarkable ability to adapt to new tasks given small numbers of examples. But how effectively can these models adapt as teachers to students of different types? To study this question, we introduce a suite of models and evaluation methods we call AdapT. AdapT has two components: (1) a collection of simulated Bayesian student models that can be used for evaluation of automated teaching methods; (2) a platform for evaluation with human students, to characterize the real-world effectiveness of these methods. We additionally introduce (3) AToM, a new probabilistic method for adaptive teaching that jointly infers students’ past beliefs and optimizes for the correctness of future beliefs. In evaluations of simulated students across three learning domains (fraction arithmetic, English morphology, function learning), AToM systematically outperforms LLM-based and standard Bayesian teaching methods. In human experiments, both AToM and LLMs outperform non-adaptive random example selection. Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive methods for solving it.
%R 10.18653/v1/2024.acl-long.718
%U https://aclanthology.org/2024.luhme-long.718/
%U https://doi.org/10.18653/v1/2024.acl-long.718
%P 13283-13310
Markdown (Informal)
[Toward In-Context Teaching: Adapting Examples to Students’ Misconceptions](https://aclanthology.org/2024.luhme-long.718/) (Ross & Andreas, ACL 2024)
ACL