@inproceedings{dou-etal-2024-reducing,
title = "Reducing Privacy Risks in Online Self-Disclosures with Language Models",
author = "Dou, Yao and
Krsek, Isadora and
Naous, Tarek and
Kabra, Anubha and
Das, Sauvik and
Ritter, Alan and
Xu, Wei",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.741/",
doi = "10.18653/v1/2024.acl-long.741",
pages = "13732--13754",
abstract = "Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through detection and abstraction. We develop a taxonomy of 19 self-disclosure categories and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for detection, achieving over 65{\%} partial span F$_1$. We further conduct an HCI user study, with 82{\%} of participants viewing the model positively, highlighting its real-world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction, which is rephrasing disclosures into less specific terms while preserving their utility, e.g., {\textquotedblleft}Im 16F{\textquotedblright} to {\textquotedblleft}I`m a teenage girl{\textquotedblright}. We explore various fine-tuning strategies, and our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation. To help users in deciding which disclosures to abstract, we present a task of rating their importance for context understanding. Our fine-tuned model achieves 80{\%} accuracy, on-par with GPT-3.5. Given safety and privacy considerations, we will only release our corpus and models to researcher who agree to the ethical guidelines outlined in Ethics Statement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dou-etal-2024-reducing">
<titleInfo>
<title>Reducing Privacy Risks in Online Self-Disclosures with Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isadora</namePart>
<namePart type="family">Krsek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tarek</namePart>
<namePart type="family">Naous</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anubha</namePart>
<namePart type="family">Kabra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sauvik</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through detection and abstraction. We develop a taxonomy of 19 self-disclosure categories and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for detection, achieving over 65% partial span F₁. We further conduct an HCI user study, with 82% of participants viewing the model positively, highlighting its real-world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction, which is rephrasing disclosures into less specific terms while preserving their utility, e.g., “Im 16F” to “I‘m a teenage girl”. We explore various fine-tuning strategies, and our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation. To help users in deciding which disclosures to abstract, we present a task of rating their importance for context understanding. Our fine-tuned model achieves 80% accuracy, on-par with GPT-3.5. Given safety and privacy considerations, we will only release our corpus and models to researcher who agree to the ethical guidelines outlined in Ethics Statement.</abstract>
<identifier type="citekey">dou-etal-2024-reducing</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.741</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.741/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>13732</start>
<end>13754</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reducing Privacy Risks in Online Self-Disclosures with Language Models
%A Dou, Yao
%A Krsek, Isadora
%A Naous, Tarek
%A Kabra, Anubha
%A Das, Sauvik
%A Ritter, Alan
%A Xu, Wei
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F dou-etal-2024-reducing
%X Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through detection and abstraction. We develop a taxonomy of 19 self-disclosure categories and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for detection, achieving over 65% partial span F₁. We further conduct an HCI user study, with 82% of participants viewing the model positively, highlighting its real-world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction, which is rephrasing disclosures into less specific terms while preserving their utility, e.g., “Im 16F” to “I‘m a teenage girl”. We explore various fine-tuning strategies, and our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation. To help users in deciding which disclosures to abstract, we present a task of rating their importance for context understanding. Our fine-tuned model achieves 80% accuracy, on-par with GPT-3.5. Given safety and privacy considerations, we will only release our corpus and models to researcher who agree to the ethical guidelines outlined in Ethics Statement.
%R 10.18653/v1/2024.acl-long.741
%U https://aclanthology.org/2024.luhme-long.741/
%U https://doi.org/10.18653/v1/2024.acl-long.741
%P 13732-13754
Markdown (Informal)
[Reducing Privacy Risks in Online Self-Disclosures with Language Models](https://aclanthology.org/2024.luhme-long.741/) (Dou et al., ACL 2024)
ACL
- Yao Dou, Isadora Krsek, Tarek Naous, Anubha Kabra, Sauvik Das, Alan Ritter, and Wei Xu. 2024. Reducing Privacy Risks in Online Self-Disclosures with Language Models. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13732–13754, Bangkok, Thailand. Association for Computational Linguistics.