@inproceedings{zhao-etal-2024-docmath,
title = "{D}oc{M}ath-Eval: Evaluating Math Reasoning Capabilities of {LLM}s in Understanding Long and Specialized Documents",
author = "Zhao, Yilun and
Long, Yitao and
Liu, Hongjun and
Kamoi, Ryo and
Nan, Linyong and
Chen, Lyuhao and
Liu, Yixin and
Tang, Xiangru and
Zhang, Rui and
Cohan, Arman",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.852/",
doi = "10.18653/v1/2024.acl-long.852",
pages = "16103--16120",
abstract = "Recent LLMs have demonstrated remarkable performance in solving exam-like math word problems. However, the degree to which these numerical reasoning skills are effective in real-world scenarios, particularly in expert domains, is still largely unexplored. This paper introduces DocMath-Eval, a comprehensive benchmark specifically designed to evaluate the numerical reasoning capabilities of LLMs in the context of understanding and analyzing specialized documents containing both text and tables. We conduct an extensive evaluation of 48 LLMs with Chain-of-Thought and Program-of-Thought prompting methods, aiming to comprehensively assess the capabilities and limitations of existing LLMs in DocMath-Eval. We found that even the current best-performing system (i.e., GPT-4o) still significantly lags behind human experts in solving complex numerical reasoning problems grounded in long contexts. We believe that DocMath-Eval can serve as a valuable benchmark for evaluating LLMs' capabilities in solving challenging numerical reasoning problems within expert domains."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2024-docmath">
<titleInfo>
<title>DocMath-Eval: Evaluating Math Reasoning Capabilities of LLMs in Understanding Long and Specialized Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yilun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yitao</namePart>
<namePart type="family">Long</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongjun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryo</namePart>
<namePart type="family">Kamoi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linyong</namePart>
<namePart type="family">Nan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lyuhao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangru</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arman</namePart>
<namePart type="family">Cohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent LLMs have demonstrated remarkable performance in solving exam-like math word problems. However, the degree to which these numerical reasoning skills are effective in real-world scenarios, particularly in expert domains, is still largely unexplored. This paper introduces DocMath-Eval, a comprehensive benchmark specifically designed to evaluate the numerical reasoning capabilities of LLMs in the context of understanding and analyzing specialized documents containing both text and tables. We conduct an extensive evaluation of 48 LLMs with Chain-of-Thought and Program-of-Thought prompting methods, aiming to comprehensively assess the capabilities and limitations of existing LLMs in DocMath-Eval. We found that even the current best-performing system (i.e., GPT-4o) still significantly lags behind human experts in solving complex numerical reasoning problems grounded in long contexts. We believe that DocMath-Eval can serve as a valuable benchmark for evaluating LLMs’ capabilities in solving challenging numerical reasoning problems within expert domains.</abstract>
<identifier type="citekey">zhao-etal-2024-docmath</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.852</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.852/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>16103</start>
<end>16120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DocMath-Eval: Evaluating Math Reasoning Capabilities of LLMs in Understanding Long and Specialized Documents
%A Zhao, Yilun
%A Long, Yitao
%A Liu, Hongjun
%A Kamoi, Ryo
%A Nan, Linyong
%A Chen, Lyuhao
%A Liu, Yixin
%A Tang, Xiangru
%A Zhang, Rui
%A Cohan, Arman
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zhao-etal-2024-docmath
%X Recent LLMs have demonstrated remarkable performance in solving exam-like math word problems. However, the degree to which these numerical reasoning skills are effective in real-world scenarios, particularly in expert domains, is still largely unexplored. This paper introduces DocMath-Eval, a comprehensive benchmark specifically designed to evaluate the numerical reasoning capabilities of LLMs in the context of understanding and analyzing specialized documents containing both text and tables. We conduct an extensive evaluation of 48 LLMs with Chain-of-Thought and Program-of-Thought prompting methods, aiming to comprehensively assess the capabilities and limitations of existing LLMs in DocMath-Eval. We found that even the current best-performing system (i.e., GPT-4o) still significantly lags behind human experts in solving complex numerical reasoning problems grounded in long contexts. We believe that DocMath-Eval can serve as a valuable benchmark for evaluating LLMs’ capabilities in solving challenging numerical reasoning problems within expert domains.
%R 10.18653/v1/2024.acl-long.852
%U https://aclanthology.org/2024.luhme-long.852/
%U https://doi.org/10.18653/v1/2024.acl-long.852
%P 16103-16120
Markdown (Informal)
[DocMath-Eval: Evaluating Math Reasoning Capabilities of LLMs in Understanding Long and Specialized Documents](https://aclanthology.org/2024.luhme-long.852/) (Zhao et al., ACL 2024)
ACL
- Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi, Linyong Nan, Lyuhao Chen, Yixin Liu, Xiangru Tang, Rui Zhang, and Arman Cohan. 2024. DocMath-Eval: Evaluating Math Reasoning Capabilities of LLMs in Understanding Long and Specialized Documents. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16103–16120, Bangkok, Thailand. Association for Computational Linguistics.