@inproceedings{zhang-etal-2024-analyzing,
title = "Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding",
author = "Zhang, Zhihan and
Cao, Yixin and
Ye, Chenchen and
Ma, Yunshan and
Liao, Lizi and
Chua, Tat-Seng",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-long.87/",
doi = "10.18653/v1/2024.acl-long.87",
pages = "1588--1606",
abstract = "The digital landscape is rapidly evolving with an ever-increasing volume of online news, emphasizing the need for swift and precise analysis of complex events.We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE). This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE, characterized by their key points and timestamps. We establish a benchmark, named TCELongBench, to evaluate the proficiency of LLMs in handling temporal dynamics and understanding extensive text. This benchmark encompasses three distinct tasks - reading comprehension, temporal sequencing, and future event forecasting. In the experiment, we leverage retrieval-augmented generation (RAG) method and LLMs with long context window to deal with lengthy news articles of TCE. Our findings indicate that models with suitable retrievers exhibit comparable performance with those utilizing long context window."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2024-analyzing">
<titleInfo>
<title>Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhihan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenchen</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunshan</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lizi</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tat-Seng</namePart>
<namePart type="family">Chua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The digital landscape is rapidly evolving with an ever-increasing volume of online news, emphasizing the need for swift and precise analysis of complex events.We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE). This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE, characterized by their key points and timestamps. We establish a benchmark, named TCELongBench, to evaluate the proficiency of LLMs in handling temporal dynamics and understanding extensive text. This benchmark encompasses three distinct tasks - reading comprehension, temporal sequencing, and future event forecasting. In the experiment, we leverage retrieval-augmented generation (RAG) method and LLMs with long context window to deal with lengthy news articles of TCE. Our findings indicate that models with suitable retrievers exhibit comparable performance with those utilizing long context window.</abstract>
<identifier type="citekey">zhang-etal-2024-analyzing</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.87</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-long.87/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>1588</start>
<end>1606</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding
%A Zhang, Zhihan
%A Cao, Yixin
%A Ye, Chenchen
%A Ma, Yunshan
%A Liao, Lizi
%A Chua, Tat-Seng
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zhang-etal-2024-analyzing
%X The digital landscape is rapidly evolving with an ever-increasing volume of online news, emphasizing the need for swift and precise analysis of complex events.We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE). This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE, characterized by their key points and timestamps. We establish a benchmark, named TCELongBench, to evaluate the proficiency of LLMs in handling temporal dynamics and understanding extensive text. This benchmark encompasses three distinct tasks - reading comprehension, temporal sequencing, and future event forecasting. In the experiment, we leverage retrieval-augmented generation (RAG) method and LLMs with long context window to deal with lengthy news articles of TCE. Our findings indicate that models with suitable retrievers exhibit comparable performance with those utilizing long context window.
%R 10.18653/v1/2024.acl-long.87
%U https://aclanthology.org/2024.luhme-long.87/
%U https://doi.org/10.18653/v1/2024.acl-long.87
%P 1588-1606
Markdown (Informal)
[Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding](https://aclanthology.org/2024.luhme-long.87/) (Zhang et al., ACL 2024)
ACL