@inproceedings{gui-etal-2024-iepile,
title = "{IEP}ile: Unearthing Large Scale Schema-Conditioned Information Extraction Corpus",
author = "Gui, Honghao and
Yuan, Lin and
Ye, Hongbin and
Zhang, Ningyu and
Sun, Mengshu and
Liang, Lei and
Chen, Huajun",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-short.13/",
doi = "10.18653/v1/2024.acl-short.13",
pages = "127--146",
abstract = "Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimentally, IEPile enhance the performance of LLMs for IE, with notable improvements in zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gui-etal-2024-iepile">
<titleInfo>
<title>IEPile: Unearthing Large Scale Schema-Conditioned Information Extraction Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Honghao</namePart>
<namePart type="family">Gui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongbin</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ningyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengshu</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huajun</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimentally, IEPile enhance the performance of LLMs for IE, with notable improvements in zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community.</abstract>
<identifier type="citekey">gui-etal-2024-iepile</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.13</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-short.13/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>127</start>
<end>146</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IEPile: Unearthing Large Scale Schema-Conditioned Information Extraction Corpus
%A Gui, Honghao
%A Yuan, Lin
%A Ye, Hongbin
%A Zhang, Ningyu
%A Sun, Mengshu
%A Liang, Lei
%A Chen, Huajun
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F gui-etal-2024-iepile
%X Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimentally, IEPile enhance the performance of LLMs for IE, with notable improvements in zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community.
%R 10.18653/v1/2024.acl-short.13
%U https://aclanthology.org/2024.luhme-short.13/
%U https://doi.org/10.18653/v1/2024.acl-short.13
%P 127-146
Markdown (Informal)
[IEPile: Unearthing Large Scale Schema-Conditioned Information Extraction Corpus](https://aclanthology.org/2024.luhme-short.13/) (Gui et al., ACL 2024)
ACL