@inproceedings{ngo-nguyen-2024-recgpt,
title = "{R}ec{GPT}: Generative Pre-training for Text-based Recommendation",
author = "Ngo, Hoang and
Nguyen, Dat Quoc",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-short.29/",
doi = "10.18653/v1/2024.acl-short.29",
pages = "302--313",
abstract = "We present the first domain-adapted and fully-trained large language model, RecGPT-7B, and its instruction-following variant, RecGPT-7B-Instruct, for text-based recommendation. Experimental results on rating prediction and sequential recommendation tasks show that our model, RecGPT-7B-Instruct, outperforms previous strong baselines. We are releasing our RecGPT models as well as their pre-training and fine-tuning datasets to facilitate future research and downstream applications in text-based recommendation. Public {\textquotedblleft}huggingface{\textquotedblright} links to our RecGPT models and datasets are available at: https://github.com/VinAIResearch/RecGPT"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ngo-nguyen-2024-recgpt">
<titleInfo>
<title>RecGPT: Generative Pre-training for Text-based Recommendation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hoang</namePart>
<namePart type="family">Ngo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dat</namePart>
<namePart type="given">Quoc</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the first domain-adapted and fully-trained large language model, RecGPT-7B, and its instruction-following variant, RecGPT-7B-Instruct, for text-based recommendation. Experimental results on rating prediction and sequential recommendation tasks show that our model, RecGPT-7B-Instruct, outperforms previous strong baselines. We are releasing our RecGPT models as well as their pre-training and fine-tuning datasets to facilitate future research and downstream applications in text-based recommendation. Public “huggingface” links to our RecGPT models and datasets are available at: https://github.com/VinAIResearch/RecGPT</abstract>
<identifier type="citekey">ngo-nguyen-2024-recgpt</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.29</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-short.29/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>302</start>
<end>313</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RecGPT: Generative Pre-training for Text-based Recommendation
%A Ngo, Hoang
%A Nguyen, Dat Quoc
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ngo-nguyen-2024-recgpt
%X We present the first domain-adapted and fully-trained large language model, RecGPT-7B, and its instruction-following variant, RecGPT-7B-Instruct, for text-based recommendation. Experimental results on rating prediction and sequential recommendation tasks show that our model, RecGPT-7B-Instruct, outperforms previous strong baselines. We are releasing our RecGPT models as well as their pre-training and fine-tuning datasets to facilitate future research and downstream applications in text-based recommendation. Public “huggingface” links to our RecGPT models and datasets are available at: https://github.com/VinAIResearch/RecGPT
%R 10.18653/v1/2024.acl-short.29
%U https://aclanthology.org/2024.luhme-short.29/
%U https://doi.org/10.18653/v1/2024.acl-short.29
%P 302-313
Markdown (Informal)
[RecGPT: Generative Pre-training for Text-based Recommendation](https://aclanthology.org/2024.luhme-short.29/) (Ngo & Nguyen, ACL 2024)
ACL