@inproceedings{zouhar-etal-2024-fine,
title = "Fine-Tuned Machine Translation Metrics Struggle in Unseen Domains",
author = "Zouhar, Vil{\'e}m and
Ding, Shuoyang and
Currey, Anna and
Badeka, Tatyana and
Wang, Jenyuan and
Thompson, Brian",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-short.45/",
doi = "10.18653/v1/2024.acl-short.45",
pages = "488--500",
abstract = "We introduce a new, extensive multidimensional quality metrics (MQM) annotated dataset covering 11 language pairs in the biomedical domain. We use this dataset to investigate whether machine translation (MT) metrics which are fine-tuned on human-generated MT quality judgements are robust to domain shifts between training and inference. We find that fine-tuned metrics exhibit a substantial performance drop in the unseen domain scenario relative to both metrics that rely on the surface form and pre-trained metrics that are not fine-tuned on MT quality judgments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zouhar-etal-2024-fine">
<titleInfo>
<title>Fine-Tuned Machine Translation Metrics Struggle in Unseen Domains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vilém</namePart>
<namePart type="family">Zouhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuoyang</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Currey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatyana</namePart>
<namePart type="family">Badeka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jenyuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Thompson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a new, extensive multidimensional quality metrics (MQM) annotated dataset covering 11 language pairs in the biomedical domain. We use this dataset to investigate whether machine translation (MT) metrics which are fine-tuned on human-generated MT quality judgements are robust to domain shifts between training and inference. We find that fine-tuned metrics exhibit a substantial performance drop in the unseen domain scenario relative to both metrics that rely on the surface form and pre-trained metrics that are not fine-tuned on MT quality judgments.</abstract>
<identifier type="citekey">zouhar-etal-2024-fine</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.45</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-short.45/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>488</start>
<end>500</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-Tuned Machine Translation Metrics Struggle in Unseen Domains
%A Zouhar, Vilém
%A Ding, Shuoyang
%A Currey, Anna
%A Badeka, Tatyana
%A Wang, Jenyuan
%A Thompson, Brian
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zouhar-etal-2024-fine
%X We introduce a new, extensive multidimensional quality metrics (MQM) annotated dataset covering 11 language pairs in the biomedical domain. We use this dataset to investigate whether machine translation (MT) metrics which are fine-tuned on human-generated MT quality judgements are robust to domain shifts between training and inference. We find that fine-tuned metrics exhibit a substantial performance drop in the unseen domain scenario relative to both metrics that rely on the surface form and pre-trained metrics that are not fine-tuned on MT quality judgments.
%R 10.18653/v1/2024.acl-short.45
%U https://aclanthology.org/2024.luhme-short.45/
%U https://doi.org/10.18653/v1/2024.acl-short.45
%P 488-500
Markdown (Informal)
[Fine-Tuned Machine Translation Metrics Struggle in Unseen Domains](https://aclanthology.org/2024.luhme-short.45/) (Zouhar et al., ACL 2024)
ACL
- Vilém Zouhar, Shuoyang Ding, Anna Currey, Tatyana Badeka, Jenyuan Wang, and Brian Thompson. 2024. Fine-Tuned Machine Translation Metrics Struggle in Unseen Domains. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 488–500, Bangkok, Thailand. Association for Computational Linguistics.