@inproceedings{chen-etal-2024-dual,
title = "{DUAL}-{REFLECT}: Enhancing Large Language Models for Reflective Translation through Dual Learning Feedback Mechanisms",
author = "Chen, Andong and
Lou, Lianzhang and
Chen, Kehai and
Bai, Xuefeng and
Xiang, Yang and
Yang, Muyun and
Zhao, Tiejun and
Zhang, Min",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-short.64/",
doi = "10.18653/v1/2024.acl-short.64",
pages = "693--704",
abstract = "Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine transla004 tion. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models' self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2024-dual">
<titleInfo>
<title>DUAL-REFLECT: Enhancing Large Language Models for Reflective Translation through Dual Learning Feedback Mechanisms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lianzhang</namePart>
<namePart type="family">Lou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kehai</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuefeng</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Xiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muyun</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiejun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine transla004 tion. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models’ self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.</abstract>
<identifier type="citekey">chen-etal-2024-dual</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.64</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-short.64/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>693</start>
<end>704</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DUAL-REFLECT: Enhancing Large Language Models for Reflective Translation through Dual Learning Feedback Mechanisms
%A Chen, Andong
%A Lou, Lianzhang
%A Chen, Kehai
%A Bai, Xuefeng
%A Xiang, Yang
%A Yang, Muyun
%A Zhao, Tiejun
%A Zhang, Min
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F chen-etal-2024-dual
%X Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine transla004 tion. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models’ self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.
%R 10.18653/v1/2024.acl-short.64
%U https://aclanthology.org/2024.luhme-short.64/
%U https://doi.org/10.18653/v1/2024.acl-short.64
%P 693-704
Markdown (Informal)
[DUAL-REFLECT: Enhancing Large Language Models for Reflective Translation through Dual Learning Feedback Mechanisms](https://aclanthology.org/2024.luhme-short.64/) (Chen et al., ACL 2024)
ACL
- Andong Chen, Lianzhang Lou, Kehai Chen, Xuefeng Bai, Yang Xiang, Muyun Yang, Tiejun Zhao, and Min Zhang. 2024. DUAL-REFLECT: Enhancing Large Language Models for Reflective Translation through Dual Learning Feedback Mechanisms. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 693–704, Bangkok, Thailand. Association for Computational Linguistics.