@inproceedings{mickus-etal-2024-isotropy,
title = "Isotropy, Clusters, and Classifiers",
author = {Mickus, Timothee and
Gr{\"o}nroos, Stig-Arne and
Attieh, Joseph},
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-short.7/",
doi = "10.18653/v1/2024.acl-short.7",
pages = "75--84",
abstract = "Whether embedding spaces use all their dimensions equally, i.e., whether they are isotropic, has been a recent subject of discussion. Evidence has been accrued both for and against enforcing isotropy in embedding spaces. In the present paper, we stress that isotropy imposes requirements on the embedding space that are not compatible with the presence of clusters{---}which also negatively impacts linear classification objectives. We demonstrate this fact both empirically and mathematically and use it to shed light on previous results from the literature."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mickus-etal-2024-isotropy">
<titleInfo>
<title>Isotropy, Clusters, and Classifiers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Timothee</namePart>
<namePart type="family">Mickus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stig-Arne</namePart>
<namePart type="family">Grönroos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Attieh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Whether embedding spaces use all their dimensions equally, i.e., whether they are isotropic, has been a recent subject of discussion. Evidence has been accrued both for and against enforcing isotropy in embedding spaces. In the present paper, we stress that isotropy imposes requirements on the embedding space that are not compatible with the presence of clusters—which also negatively impacts linear classification objectives. We demonstrate this fact both empirically and mathematically and use it to shed light on previous results from the literature.</abstract>
<identifier type="citekey">mickus-etal-2024-isotropy</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.7</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-short.7/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>75</start>
<end>84</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Isotropy, Clusters, and Classifiers
%A Mickus, Timothee
%A Grönroos, Stig-Arne
%A Attieh, Joseph
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F mickus-etal-2024-isotropy
%X Whether embedding spaces use all their dimensions equally, i.e., whether they are isotropic, has been a recent subject of discussion. Evidence has been accrued both for and against enforcing isotropy in embedding spaces. In the present paper, we stress that isotropy imposes requirements on the embedding space that are not compatible with the presence of clusters—which also negatively impacts linear classification objectives. We demonstrate this fact both empirically and mathematically and use it to shed light on previous results from the literature.
%R 10.18653/v1/2024.acl-short.7
%U https://aclanthology.org/2024.luhme-short.7/
%U https://doi.org/10.18653/v1/2024.acl-short.7
%P 75-84
Markdown (Informal)
[Isotropy, Clusters, and Classifiers](https://aclanthology.org/2024.luhme-short.7/) (Mickus et al., ACL 2024)
ACL
- Timothee Mickus, Stig-Arne Grönroos, and Joseph Attieh. 2024. Isotropy, Clusters, and Classifiers. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 75–84, Bangkok, Thailand. Association for Computational Linguistics.