@inproceedings{xu-etal-2024-cleaner,
title = "Cleaner Pretraining Corpus Curation with Neural Web Scraping",
author = "Xu, Zhipeng and
Liu, Zhenghao and
Yan, Yukun and
Liu, Zhiyuan and
Yu, Ge and
Xiong, Chenyan",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.luhme-short.72/",
doi = "10.18653/v1/2024.acl-short.72",
pages = "802--812",
abstract = "The web contains large-scale, diverse, and abundant information to satisfy the information-seeking needs of humans. Through meticulous data collection, preprocessing, and curation, webpages can be used as a fundamental data resource for language model pretraining. However, when confronted with the progressively revolutionized and intricate nature of webpages, rule-based/feature-based web scrapers are becoming increasingly inadequate. This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages. Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20{\%} improvement, demonstrating its potential in extracting higher-quality data to facilitate the language model pretraining. All of the code is available at https://github.com/OpenMatch/NeuScraper."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2024-cleaner">
<titleInfo>
<title>Cleaner Pretraining Corpus Curation with Neural Web Scraping</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhipeng</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenghao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yukun</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ge</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenyan</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The web contains large-scale, diverse, and abundant information to satisfy the information-seeking needs of humans. Through meticulous data collection, preprocessing, and curation, webpages can be used as a fundamental data resource for language model pretraining. However, when confronted with the progressively revolutionized and intricate nature of webpages, rule-based/feature-based web scrapers are becoming increasingly inadequate. This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages. Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement, demonstrating its potential in extracting higher-quality data to facilitate the language model pretraining. All of the code is available at https://github.com/OpenMatch/NeuScraper.</abstract>
<identifier type="citekey">xu-etal-2024-cleaner</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.72</identifier>
<location>
<url>https://aclanthology.org/2024.luhme-short.72/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>802</start>
<end>812</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cleaner Pretraining Corpus Curation with Neural Web Scraping
%A Xu, Zhipeng
%A Liu, Zhenghao
%A Yan, Yukun
%A Liu, Zhiyuan
%A Yu, Ge
%A Xiong, Chenyan
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F xu-etal-2024-cleaner
%X The web contains large-scale, diverse, and abundant information to satisfy the information-seeking needs of humans. Through meticulous data collection, preprocessing, and curation, webpages can be used as a fundamental data resource for language model pretraining. However, when confronted with the progressively revolutionized and intricate nature of webpages, rule-based/feature-based web scrapers are becoming increasingly inadequate. This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages. Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement, demonstrating its potential in extracting higher-quality data to facilitate the language model pretraining. All of the code is available at https://github.com/OpenMatch/NeuScraper.
%R 10.18653/v1/2024.acl-short.72
%U https://aclanthology.org/2024.luhme-short.72/
%U https://doi.org/10.18653/v1/2024.acl-short.72
%P 802-812
Markdown (Informal)
[Cleaner Pretraining Corpus Curation with Neural Web Scraping](https://aclanthology.org/2024.luhme-short.72/) (Xu et al., ACL 2024)
ACL
- Zhipeng Xu, Zhenghao Liu, Yukun Yan, Zhiyuan Liu, Ge Yu, and Chenyan Xiong. 2024. Cleaner Pretraining Corpus Curation with Neural Web Scraping. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 802–812, Bangkok, Thailand. Association for Computational Linguistics.