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Abstract
The high cost of human annotation labor and the advent of low-cost Large Language Models (LLMs) offer opportu-
nities to accelerate science. This study addresses the critical challenge of disambiguating mathematical identifiers
in Mathematical Language Processing (MLP), a significant step toward the effective interpretation and utilization
of mathematical documents. Unlike traditional annotation methods, which are labor-intensive and prone to incon-
sistencies, our approach leverages the capabilities of LLMs to automate the disambiguation process. We employ
state-of-the-art LLMs, including GPT-3.5 and GPT-4, and open-source alternatives to generate a dictionary for an-
notating mathematical identifiers, linking each identifier to its conceivable descriptions, and then assigning these
definitions to the respective identifier instances based on context. We offer a novel solution to the ambiguity prob-
lem inherent in mathematical expressions by exploiting this capability of LLMs which were unknown until now. Our
extensive evaluation metrics include the CoNLL score for co-reference cluster quality and semantic correctness of
the annotations. We demonstrate the effectiveness of our approach in resolving identifier ambiguities, thereby mak-
ing a substantial contribution to the advancement of MLP. This work paves the way for future research in automating
the interpretation of complex scientific texts, highlighting the potential of LLMs in transforming the landscape of
mathematical documentation analysis, expanding model options, improving annotation coverage, and reducing an-
notation expenses.

1. Introduction
Scientific papers in Science, Technology, Engi-
neering, and Mathematics (STEM) domains often
comprise complex mathematical formulae. The
ambiguity arising from the identical use of iden-
tifiers with varied meanings based on context
can perplex readers. The manual annotation of
these identifiers is a tedious process, necessitat-
ing automation to facilitate co-reference resolution
and formula grounding (Asakura et al., 2020), as
shown in Figure 1.
In this context, we utilize the Math Identifier-
Oriented Grounding Annotation Tool, Mio-
Gatto (Asakura et al., 2021), and enhance it
with automation capabilities. The proposed solu-
tion involves three key stages: pre-processing,
dictionary generation, and association of each
occurrence. (1) Pre-processing converts the
LATEX source into a machine-readable HTML/XML
format, using LATEXML (Ginev et al., 2011). (2)
Dictionary generation leverages large language
models (LLMs) to construct a dictionary with
mathematical identifiers as keys and their po-
tential descriptions as corresponding values. (3)
In the association phase, each occurrence of a
mathematical identifier is linked with its fitting
definition from the generated dictionary. For this,
we take inspiration from the task of MathAlign
(Alexeeva et al., 2020).
We identify critical challenges in the current man-
ual approach and propose automated alternatives
powered by LLMs. Six diverse research questions

seek to gauge the LLMs’ capability to automate
mathematical identifier annotations concerning ef-
ficacy, context understanding, coverage, ground
truth accuracy, efficiency, and potential pitfalls.
The foundational contributions of this work encap-
sulate extensive annotations, performance evalu-
ation, integration with MioGatto, ground truth an-
notation, and CoNLL score (Pradhan et al., 2012)
estimation.

Figure 1: The challenge of disambiguating identi-
fiers within mathematical formulae. A single vari-
able can have multiple roles, each based on dis-
tinct definitions, creating ambiguity.
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Figure 2: Screenshot of MioGatto showing its
functioning where two possible annotations exist
for an identifier. Hovering over the identifier shows
the assigned annotation

Motivation and Problem Manual annotation is
the traditional process of establishing identifier
definitions, but it poses significant constraints
regarding the time consumed, lack of univer-
sal accessibility, and increased financial burdens.
Translating these constraints into a need for effi-
ciency and universal availability has sparked in-
terest in automation as the promising alternative.
Nonetheless, the journey toward full automation
is fraught with challenges from traditional Natural
Language Processing (NLP) techniques. By in-
vesting in LLMs, we aim to harness their under-
standing and generation capabilities to streamline
the annotation process effectively.

Research Questions Our research aims to as-
certain the efficiency and feasibility of LLMs for
automated mathematical identifier annotations in
scientific papers. To guide the investigation, we
pose six main research questions. These ques-
tions cover the effectiveness of LLMs, their abil-
ity to contextually understand mathematical iden-
tifiers, the percentage of a paper they can effec-
tively annotate, their accuracy concerning ground
truth, the impact on annotation time and cost, and
the possible limitations they might present in au-
tomating this task. Answers to these research
questions should offer a thorough understanding
of the potential and drawbacks of LLMs in au-
tomating mathematical identifier annotations.

Contributions Our research innovatively ap-
plies LLMs like GPT-4 to automate the disam-
biguation and annotation of mathematical identi-
fiers, significantly enhancing the comprehension
of scientific texts. We have established a novel

application of LLMs, particularly GPT-4 and its
open-source counterparts, showcasing their capa-
bility to not only generate accurate and context-
specific definitions for mathematical identifiers but
also to do so with a high degree of semantic ac-
curacy. We achieved remarkable semantic accu-
racy and CoNLL scores, demonstrating LLMs’ ef-
fectiveness in complex annotation tasks beyond
their initial training purposes. This work substan-
tially reduces manual annotation efforts and costs,
presenting a novel, efficient pathway for interpret-
ing mathematical documentation. Our findings not
only validate the approach with a diverse dataset
of 40 scientific papers but also set a new bench-
mark for future explorations in Mathematical Lan-
guage Processing and the automation of scientific
text analysis.

2. Related Work
2.1. Formula Grounding and Tools
Our research, aimed at disambiguating mathe-
matical identifiers, is positioned as a task within
the domain of mathematical language process-
ing (Meadows and Freitas, 2023). In particular, we
focus on the automation of formula grounding, pro-
posed by Asakura et al. (2020), using LLMs. This
approach to formula grounding is distinguished
by its consideration of the fact that the meanings
of mathematical tokens are not constant within
a document. Another known task related to for-
mula grounding is the task called description align-
ment. There are several subtle variations of de-
scription alignment (Yoko et al., 2012; Stathopou-
los et al., 2018; Alexeeva et al., 2020), but fun-
damentally, it is a simple task that involves as-
signing text descriptions to mathematical tokens.
Solutions for description alignment have included
rule-based (Alexeeva et al., 2020) and machine
learning-based methods utilizing CRF, SVM (Yoko
et al., 2012), Gauthian Ranking (Schubotz et al.,
2016, 2017), Decision Trees, and BERT (Shan
and Youssef, 2021; Lee and Na, 2022). However,
the task of description alignment and its solutions
typically assumes that the meaning of mathemat-
ical tokens is singular within a document, thereby
failing to detect co-reference relationships among
mathematical tokens. This study proposes a so-
lution to the formula grounding task using LLM,
marking the first instance to elucidate how accu-
rately LLMs can recognize co-reference relation-
ships among mathematical identifiers.
The proponents of the formula grounding task
have introduced MioGatto (Asakura et al., 2021)
as a dedicated annotation tool. Mathemati-
cal grounding involves co-reference analysis tar-
geting mathematical expressions, but it is well-
known that annotation targeting mathematical ex-
pressions and those involving co-reference rela-
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tionships are both costly. Consequently, tools
specialized in creating datasets for co-reference
analysis (Reiter, 2018; Oberle, 2018; Bornstein
et al., 2020) and those for mathematical expres-
sions (Ginev et al., 2015; Scharpf et al., 2019)
have been proposed. MioGatto is designed to ef-
ficiently perform these high-cost annotations, em-
bodying the characteristics of both a tool for co-
reference analysis annotations and one for math-
ematical expressions. This study proposes a
method to automate this costly annotation process
by generating outputs targeted at MioGatto’s in-
puts using LLM.

2.2. The Role of LLMs and Pre-trained
Frameworks

The introduction of pre-trained models like Math-
BERT (Peng et al., 2021) and the evaluation of
GPT-3.5 (He et al., 2023) are notable develop-
ments. While MathBERT is fine-tuned for math-
ematical formula decoding, it does not cater to an-
notating mathematical identifiers, our target area.
Meadows and Freitas (2023) recommended trans-
former models like GPT for formula retrieval. The
emphasis is on quantitative reasoning using infor-
mal mathematical text, advancing the automation
cause. However, our study fundamentally differs
from theirs, as we primarily focus on annotation
automation, not formula retrieval.

2.3. LLM Applications in the MLP Field
Recent studies, including the work by de Paiva
et al. (2023), have explored the potential of LLMs
in extracting mathematical concepts from textual
data. Their research demonstrates the feasibil-
ity of using LLMs to automatically identify and
annotate mathematical terms within a corpus of
mathematical texts. By leveraging the computa-
tional power and linguistic capabilities of LLMs,
researchers can improve the accuracy and effi-
ciency of mathematical text processing, paving
the way for more sophisticated applications in the
field. Lai et al. (2022) and Lee and Na (2022) have
attempted similarly to extract mathematical iden-
tifiers and link to their description using Named
Entity Recognition (NER) and Relation Extraction
(RE).

3. Methodology
This research consists of three stages for anchor-
ing identifiers in mathematical formulae from re-
search papers to their given descriptions: 1) pre-
processing of identifiers, 2) dictionary construc-
tion, and 3) association of individual IDs to their
description instances. LLMs and LATEXML utilities
are deployed for this. The result is accelerated an-
notation of mathematical identifiers.

1) Pre-processing of Identifiers: Figure 3 shows
the results of LATEX to HTML conversion using
LATEXML (Ginev et al., 2011). The format is com-
patible with MioGatto and allows formula ground-
ing.

<p> <span> </span><span class="gd_word"
↪→ id="S2.SS1.p1.2.2.w9">

The</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.2.w10">

language</span><span> </span><math id="S2
↪→ .SS1.p1.2.m2.1" class="ltx_Math"
↪→ alttext="\mathcal{L}" display="
↪→ inline"><semantics id="S2.SS1.p1
↪→ .2.m2.1a"><mi class="
↪→ ltx_font_mathcaligraphic" id="S2.
↪→ SS1.p1.2.m2.1.1" xref="S2.SS1.p1
↪→ .2.m2.1.1.cmml">

L</mi></semantics></math><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w1">

is</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w2">

defined</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w3">

by</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w4">

the</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w5">

following</span><span></span><span class=
↪→ "gd_word" id="S2.SS1.p1.2.3.w6">

grammar:</span></p>

Figure 3: HTML format example from “A Logic
of Expertise” (Singleton, 2021) obtained by trans-
forming the LATEX source using LATEXML. This
machine-readable format serves as the basis for
dictionary generation and for showing annotations
in MioGatto.

2) Dictionary Construction: In the second stage,
OpenAI’s GPT, and other open-source LLMs are
utilized to automatically generate a dictionary con-
taining potential descriptions for each identifier.
Since some lengthy papers exceed the context
window of LLMs, the papers are partitioned into
smaller and overlapping chunks. In this second
step, the mcdict.json file is produced (Figure 4a)
after passing each paper chunk through the LLM.
3)Association of IDs to Description Instances: The
last stage is to deploy LLMs to annotate every
instance of identifiers with suitable descriptions
and store them in the anno.json file (Figure 4b).
Quantized1 open-source LLMs like Superhot mod-
els2 (Chen et al., 2023) are used during this stage

1https://medium.com/@developer.yasir.pk/
quantized-large-language-model-e80bdcb81a52

2https://huggingface.co/TheBloke/

https://medium.com/@developer.yasir.pk/quantized-large-language-model-e80bdcb81a52
https://medium.com/@developer.yasir.pk/quantized-large-language-model-e80bdcb81a52
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
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{
"_author": String,
"_mcdict_version": String,
"concepts": {

ID: {
"_surface": {

"text": String,
"unicode_name": String

},
"identifiers": {

"default": [ {
"affixes": List,
"arity": Integer,
"description": String

},
... ]

}
},
...

}
}

(a) The mcdict.json dictionary file (shortened) contains
a list of all extracted mathematical identifiers (keys) and
their possible descriptions (values).
{
"_anno_version": String,
"_annotator": String,
"mi_anno": {
ID: {
"concept_id": Integer, "sog": List

},
...

}
}

(b) The anno.json annotation file (shortened) holds the
index of all the chosen descriptions for each identifier.

Figure 4: JSON file-structure in MioGatto.

due to their more extensive context window capa-
bilities and well-preserved performance.
Linking between the three primary files (source,
mcdict, and anno) is made possible by the IDs ex-
tracted during the pre-processing phase.

3.1. Pre-processing
The choice to parse the LATEX code directly via
LLMs is primarily due to the semantic richness lay-
ered over mathematical identifiers in LATEX and its
efficient token usage relative to its counterparts
(see Table 1). The LATEX code is also converted to
HTML, creating a web rendering of the given paper
suitable for humans but also machine-readable
and useful as input to MioGatto.

Vicuna-33B-1-3-SuperHOT-8K-GPTQ

Despite potential setbacks due to complexities
in mapping dictionary keys to their rendered in-
stances, using LATEXML in the pre-processing step
emerged as an optimal solution after successfully
isolating the mathematical symbols and finding a
way to render them in a machine-readable form.

3.2. Dictionary Generation
LLMs are constructed as chat models able to out-
put text in many languages, including some pro-
gramming languages. They are also highly ef-
fective in generating a well-structured dictionary
of mathematical identifiers and their possible de-
scriptions using strategical prompting (see Fig-
ure 5). LLMs have certain limitations, notably
the overflow issue—given that the length of most
papers exceeds the model’s context window. A
master dictionary is, therefore, finally produced
only after an iterative process of sub-parts gener-
ation and incorporation from all overlapping paper
chunks.

{'role': 'system',
'content': 'You are a helpful research
assistant tasked with converting long
paragraphs into a Python dictionary.
The goal is to identify and classify
each individual mathematical symbol,
variable, and identifier in the text
marked between "<| |>". The dictionary
should store the identifiers as keys
and their corresponding definitions as
values in an array format.'}

Figure 5: System prompt for dictionary generation
instructing the LLM to convert long paragraphs into
a Python dictionary, emphasizing the need to iden-
tify and classify each mathematical identifier.

3.3. Association of ID to Description
Occurrence

The final stage of associating extracted identifiers
with their descriptions also employs LLMs, like in
the dictionary generation stage. The goal is to en-
sure consistency and accuracy using prompting
again (see Figure 6). Annotated identifiers with the
chosen description act as a contextual reference
for subsequent identifiers within the same context
(see Figure 7).
A potential problem in providing this context could
be the cascading effect of errors if a misannotation
occurs. Such scenarios, although limited, are ac-
counted for by deploying open-source LLMs that
promise equal performance and extended context
windows compared to the proprietary ones.
We conducted experiments with this approach on
40 academic texts using OpenAI’s LLMs and other

https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
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Encoding Formula Tokens
LATEX x = −b±

√
b2−4ac
2a 24

ASCII Math x = (-b +/- sqrt{b^2 - 4ac})/(2a) 23
XML Too long, see Appendix A.1 387

Encoding Formula Tokens
LATEX

∮
C
~B ◦ d~l = µ0

(
Ienc + ε0

d
dt
∫
S
~E ◦ n̂ da

)
84

ASCII Math oint_C (B . dl)=mu_0*(I_{enc} +
eps_0 * d/dt * int_S (E . n_{hat}) da)

42

XML Too long, see Appendix A.2 929

Table 1: Token usages of three different types of encoding (LATEX, ASCII Math, and XML). Quadratic
Equation and Ampere’s Circuit Law are used as examples.

{
'role': 'system',
'content': 'You are a professional
annotator API. Your job is to select
a fitting annotation from a dictionary
for a mathematical identifier.'

}

Figure 6: System prompt for associating the iden-
tifiers to their descriptions, instructing the LLM to
pick a suitable definition.

selected open-source models. One noteworthy
consideration was the stochastic nature of LLMs,
which necessitated the occasional repetition of ex-
periments to obtain reliable results. The open-
source models were computationally demanding
despite being quantized, requiring up to 80GB of
VRAM. We opted for cloud-based GPUs due to
their affordability and user-friendly setup. The ex-
periments with the open-source LLMs were con-
ducted on pods (runpods.io) with configurations as
follows:

• Vicuna-33b3: 1x NVidia L40 (48GB VRAM),
250GB RAM, 32vCPU at $0.69/h

• StableBeluga24: 1x NVidia A100 SXM (80GB
VRAM), 251GB RAM, 16vCPU at $1.84/h

Our evaluation of the models’ performance was
conducted using two primary metrics: the CoNLL
Score for assessing the quality of co-reference
resolution and a measure of semantic accuracy to
evaluate the meaningfulness of the assigned def-
initions.

3https://huggingface.co/TheBloke/
Vicuna-33B-1-3-SuperHOT-8K-GPTQ

4https://huggingface.co/TheBloke/
StableBeluga2-70B-GPTQ

3.4. Reproducibility
The code can be found in Chapter 10. Use the
docker command docker run -p 4100:4100 -d
ghcr.io/mathnlp-2024/miogatto:latest pyth
on -m server PAPER_ID to launchMioGatto with
the annotations produced by a given LLM. The pa-
per IDs can be found in the ./data folder of the
repository.

4. Results
In this section, we present the results of our study
on automating mathematical identifier annotations
in scientific papers using LLMs. We evaluate the
effectiveness of LLMs in understanding and gen-
erating descriptions for mathematical identifiers,
their ability to annotate a significant portion of a
paper, the accuracy of their annotations compared
to ground truth, and the time and cost efficiency of
the annotation process.

4.1. CoNLL Score of LLMs
We first evaluated the effectiveness of LLMs in
generating descriptions for mathematical identi-
fiers. The CoNLL metric was used to measure
the quality of the co-reference clusters. The re-
sults showed that GPT-4 outperformed other mod-
els with a CoNLL score of 80.15, while other mod-
els, such as GPT-3.5-turbo and GPT-3.5-turbo-
16k, had lower scores (78.51 and 79.28, respec-
tively). Due to open-source LLMs’ relatively slow
speed (i.e., high run-time costs), we selected a
subset of 7 of the original 40 papers. We carefully
chose the papers to cover a range of attributes, in-
cluding high/low CoNLL scores, high/low seman-
tic accuracy, and short/long papers. In the smaller
dataset, GPT-4 had a CoNLL score of 87.92, while
StableBeluga2, an open-source LLM, had a score
of 84.55, and vicuna-33b had a score of 72.44.

4.2. Coverage of Annotation
We also examined the coverage of annotation,
which refers to the proportion of the paper that
LLMs could successfully annotate. GPT-4 demon-
strated the highest coverage, with 92.87% of the

https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ
https://huggingface.co/TheBloke/StableBeluga2-70B-GPTQ
https://huggingface.co/TheBloke/StableBeluga2-70B-GPTQ
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{
"role": "user",
"content": "Given the following possible annotations: \n ```json\n"
+ definitions + "\n```

Select the index for the most fitting description for the
identifier <| " + match_variable + " |> from the following text."
+ possible_affixes +
"\n Only return the value of the index and nothing else.
Do not add any explanation otherwise the API breaks.
The identifier has been marked with <||>.
The text is as follows: ```txt\n" + context + "\n```"

}

(a) User Prompt
definitions = [{'index': 0,

'identifier': 'S',
'description': 'Soundness operator'},
{'index': 1,
'identifier': 'S^',
'description': 'Dual operator of S'}]

match_variable = "S"
possible_affixes = "^"
context = "→, ↔ and truth values (⊤, ⊥) are introduced as abbreviations. We denote

↪→ by E (Dual operator of E [^])^, <|S|>^, and A^ the dual operators corresponding
↪→ to E,"

(b) User Prompt’s Variables

Figure 7: Main prompt for associating the identifiers to their descriptions instructing the LLM to select the
suitable definition index within the given context.

paper annotated, while GPT-3.5 had the least cov-
erage at 90.57%. On the smaller dataset, GPT-4
had a coverage of 96.35%, StableBeluga2 a cov-
erage of 93.17%, GPT-3.5 88.93%, and vicuna-
33b a coverage of 66.18%.

4.3. Semantic Accuracy
Semantic accuracy measures the correctness of
the annotations generated by LLMs. GPT-4 again
outperformed other models with a weighted av-
erage semantic accuracy score of 95.70%, while
other models showed lower scores, such as
GPT-3.5-turbo with 84.69% accuracy. Stable-
Beluga2 outperformed GPT-3.5 with an accuracy
of 90.91%, and vicuna-33b had an accuracy of
61.58%.

4.4. Variance of Results
To account for the stochastic nature of LLMs, we
conducted multiple runs of the annotation experi-
ment on a reference paper. The results showed
that GPT-3.5 had the lowest variance in CoNLL
scores with a standard deviation of 1.17, indicat-
ing its stability and consistency compared to other
models. GPT-3.5-turbo-16k had the highest vari-
ance with a standard deviation of 2.16,

4.5. Time and Cost Efficiency
The time and cost efficiency of the annotation pro-
cess were analyzed. GPT-3.5-turbo emerged as
the most time-efficient model, with an average an-
notation time of 2 minutes and 45 seconds per pa-
per. However, GPT-4 had the highest cost due to
its elevated token costs. The relative cost per an-
notation and time per annotation for each model
were also calculated to provide a standardized
comparison as shown in Figure 8 and 9.

5. Discussion
The results of our study demonstrate the signifi-
cant potential of LLMs in automating mathemati-
cal identifier annotations in scientific papers. GPT-
4, with its high CoNLL scores, comprehensive
coverage of annotation, and excellent semantic
accuracy, emerged as the most effective model.
GPT-3.5-turbo showed the best time and cost effi-
ciency among the models analyzed. Open-source
LLMs, such as StableBeluga2, also demonstrated
promising performance, sometimes even beat-
ing that of the GPT-3.5 model despite its smaller
model sizes.
Open-source LLMs also have the added advan-
tage of privacy and not having to pay for token us-
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Figure 8: Scatter plots of the Total Time Taken
for all five LLMs. GPT-4, despite its high costs,
emerged as the most impressive model due to its
superior performance, while GPT-3.5 turned out to
be the most cost-effective and fastest model to op-
erate.

Figure 9: Total Cost (USD) vs. Semantic Accuracy
for all five LLMs. GPT-4, despite its high costs,
emerged as the most impressive model due to its
superior performance, while GPT-3.5 turned out to
be the most cost-effective and fastest model to op-
erate.

age to OpenAI. The only cost is for their hardware
and energy usage.
OpenAI’s GPT models are general-purpose chat
models. Their capabilities of solving nontrivial
chat problems, such as formula grounding, are im-
pressive. However, they are not very efficient at
this particular purpose. Instruct models are better
suited for such intricate purposes. The instruct na-

ture of StableBeluga2, as opposed to the general-
purpose chat model design of GPT, likely con-
tributed to its performance in formula grounding.
While our results are promising, there are some
limitations to be considered. The quality of the
annotations generated by LLMs depends on the
training data they were exposed to, and they may
exhibit limitations when applied to domains or top-
ics not well-represented in their training data. Ad-
ditionally, the time and cost efficiency of the an-
notation process can vary depending on individual
circumstances, such as hardware capabilities and
token pricing.
In conclusion, LLMs have the potential to sig-
nificantly improve the efficiency and accuracy of
mathematical identifier annotations in scientific pa-
pers. Future research could focus on fine-tuning
and optimizing LLMs for specific domains or de-
veloping novel techniques to further improve the
automation process.

6. Conclusion
The focus of this research was to streamline the
task of grounding mathematical formulae in scien-
tific papers by automating the annotation of math-
ematical identifiers. This was achieved by lever-
aging LLMs such as GPT-3.5 and GPT-4 from
OpenAI, along with open-source alternatives. Us-
ing the MioGatto Annotation Tool, we presented a
technique to auto-generate a dictionary of math-
ematical identifiers and their associated descrip-
tions and contextually map each identifier instance
to its appropriate definition.
The evaluation metrics used in this study included
the CoNLL Score for co-reference clusters’ qual-
ity and semantic accuracy to measure the cor-
rectness of the annotations. Furthermore, the re-
search examined the models for annotation cov-
erage, annotation time, costs, and score varia-
tions due to LLMs’ stochastic nature. Among
the models investigated, GPT-4 excelled in its
co-reference resolution ability and semantic ac-
curacy, while GPT-3.5 was cost-effective and
demonstrated the quickest performance. Open-
source LLMs showed promising potential, with
StableBeluga2 nearly matching the GPT models,
and despite Vicuna-33 B’s lower performance, it
demonstrated that open-source LLMs could make
meaningful contributions to this field.
The outcome of our study points towards the po-
tential benefits of using proprietary and open-
source LLMs for automating the annotation of
mathematical identifiers, thus enhancing the ef-
ficiency of co-reference resolution and formula
grounding. At the same time, the results highlight
some challenges in this field, including the unpre-
dictable nature of LLMs, the contextual complexity
of mathematical identifiers, and the absence of a
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universally accepted measure of semantic accu-
racy.
While the contributions of this research critically
impact the mathematical language processing do-
main, future research based on the foundation of
our work can further refine the methods, explore
the use of different LLMs, and develop more so-
phisticated measures for semantic accuracy.

7. Future Work
Even though this study achieved high accuracy
and coverage, there is room for further improve-
ment. More sophisticated measures of seman-
tic accuracy could be developed, and better an-
notation accuracy and coverage should both be
achievable well below humans’ price/performance
ratio. Better methods to enhance the correctness
of annotations should also be looked into. Intro-
ducing feedback mechanisms into the annotation
process would allow continuous improvements in
the annotation quality.
Our future work will explore creating a cost-
effective solution for formula grounding by com-
bining dictionary generation via open-source LLMs
and better auto-association through machine
learning models.

8. Optional Supplementary
Materials: Appendices, Software

and Data
We provide a link to an anonymous GitHub Repos-
itory but do not expect the reviewers to check it. It
is, however, possible, and other researchers might
want to do so (ArXiv, etc). See Section 10.
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A. XML Encoding Example
This section shows the complicated formatting of
XML which renders it as an unsuitable type for in-
put to LLMs.

A.1. Quadratic Equation

The XML encoding of x = −b±
√
b2−4ac
2a is as fol-

lows:

<math display="block"
style="display:block math;">

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo>-</mo>
<mi>b</mi>
<mo>±</mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>

</msup>
<mo>-</mo>
<mn>4</mn>
<mi>a</mi>
<mi>c</mi>

</mrow>
</msqrt>

</mrow>
<mrow>
<mn>2</mn>
<mi>a</mi>

</mrow>
</mfrac>

</mrow>
</math>
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https://doi.org/10.1145/2911451.2911503
https://doi.org/10.1145/2911451.2911503
https://doi.org/10.1145/2911451.2911503
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https://doi.org/10.1007/978-3-030-81097-9_7
https://doi.org/10.18653/v1/N18-1028
https://doi.org/10.18653/v1/N18-1028
https://doi.org/10.18653/v1/N18-1028
https://doi.org/10.11517/pjsai.JSAI2012.0_3P1IOS2a3
https://doi.org/10.11517/pjsai.JSAI2012.0_3P1IOS2a3
https://anonymous.4open.science/r/grounding-of-formulae-mathnlp-2024-27C5/
https://anonymous.4open.science/r/grounding-of-formulae-mathnlp-2024-27C5/
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A.2. Ampere’s Circuit Law
The XML encoding of

∮
C
~B.d~̀ = µ0(Ienc +

ε0
d
dt

∫
S
~E.n̂ da) is as follows:

<math>
<mrow>
<msub>
<mo movablelimits="false">�</mo>
<mi>C</mi>

</msub>
<mover>
<mi>B</mi>
<mo stretchy="false"
style="transform:scale(0.75)
translate(10%, 30%);">→</mo>

</mover>
<mo>�</mo>

</mrow>
<mrow>
<mrow>
<mi mathvariant="normal">d</mi>

</mrow>
<mover>
<mi>l</mi>
<mo stretchy="false"
style="transform:scale(0.75)
translate(10%, 30%);">→</mo>

</mover>
<mo>=</mo>

</mrow>
<mrow>
<msub>
<mi>�</mi>
<mn>0</mn>

</msub>
<mrow>
<mo fence="true" form="prefix">(</mo>
<msub>
<mi>I</mi>
<mtext>enc</mtext>

</msub>
<mo>+</mo>
<msub>
<mi> � </mi>
<mn>0</mn>

</msub>
<mfrac>
<mrow>
<mi mathvariant="normal">d</mi>

</mrow>
<mrow>
<mrow>
<mi mathvariant="normal">d</mi>

</mrow>
<mi>t</mi>

</mrow>
</mfrac>
<msub>

<mo movablelimits="false">�</mo>
<mi>S</mi>

</msub>
<mover>
<mi>E</mi>
<mo stretchy="false"
style="transform:scale(0.75)
translate(10%, 30%);">→</mo>

</mover>
<mo>�</mo>
<mover>
<mi>n</mi>
<mo stretchy="false"
style="math-style:normal;
math-depth:0;">^</mo>

</mover>
<mspace width="0.2778em"></mspace>
<mrow>
<mi mathvariant="normal">d</mi>

</mrow>
<mi>a</mi>
<mo fence="true" form="postfix">)</mo>

</mrow>
</mrow>

</math>
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