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Abstract
The advent of Large Language Models (LLMs) based on the Transformer architecture has led to remarkable
advancements in various domains, including reasoning tasks. However, accurately assessing the performance
of Large Language Models, particularly in the reasoning domain, remains a challenge. In this paper, we
propose the Semantically Rich Variable Substitution Method (SemRiVas) as an enhancement to existing
symbolic methodologies for evaluating LLMs on Mathematical Word Problems (MWPs). Unlike previous ap-
proaches that utilize generic symbols for variable substitution, SemRiVas employs descriptive variable names,
aiming to improve the problem-solving abilities of LLMs. Our method aims to eliminate the need for LLMs
to possess programming proficiency and perform arithmetic operations, to be universally applicable. Our
experimental results demonstrate the superior accuracy of SemRiVas compared to prior symbolic methods,
particularly in resolving longer and more complex MWP questions. However, LLMs’ performance with SemRiVas and
symbolic methods that utilize one-character variables still falls short compared to notable techniques like CoT and PaL.
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1. Introduction

The Transformer architecture (Vaswani et al., 2023)
has facilitated the development of Large Language
Models (LLMs) capable of achieving exceptional
performance. Models like PaLM 540B (Chowdhery
et al., 2023) and GPT-4 (Achiam et al., 2023), with
billions of parameters, have undergone training on
vast amounts of textual data using the Transformer
architecture. These models exhibit outstanding
capabilities across various domains, including rea-
soning, coding, common sense, translation, and
planning, often reaching or surpassing human-level
performance (Achiam et al., 2023). The remarkable
performance of these models has sparked signif-
icant interest among researchers, leading to the
creation of numerous LLMs such as Llama (Tou-
vron et al., 2023) and Phi (Li et al., 2023).

The proliferation of models has motivated re-
searchers to devise various methodologies for as-
sessing model performance and to curate datasets
for evaluating these methodologies. Typically, re-
searchers evaluate the responses of LLMs against
questions in datasets, assessing the accuracy of
these responses compared to ground truth answers
(Mialon et al., 2023; Cobbe et al., 2021).

One domain where such evaluations are con-
ducted is reasoning. In this domain, models are
tasked with detecting and executing various oper-
ations based on provided text. Achieving satisfac-
tory results in the reasoning domain has proven
challenging for LLMs, with many models exhibit-
ing notably low accuracy rates in this area (Cobbe
et al., 2021).

To measure accuracy in the reasoning domain,
many researchers use Mathematical Word Prob-
lems (MWP) (Li et al., 2023; Chowdhery et al.,
2023). These MWPs present mathematical chal-
lenges using everyday language and numerical
data. Successfully solving the problems demands
models to possess a strong proficiency in Natu-
ral Language Understanding (NLU), as they must
identify both the problem scenario and the route to
the solution beforehand. This dual requirement of
comprehending the context and deducing the prob-
lem’s intent closely aligns with human reasoning
capabilities, making MWPs a suitable evaluation
method in the reasoning domain.

Various datasets and methods are employed by
researchers to gauge skills using MWPs. Examples
of widely used datasets in the literature include
GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), and SVAMP (Patel et al., 2021).

In addition to datasets, various methods have
been developed to assist Large Language Models
(LLMs) in accurately answering questions, partic-
ularly for Mathematical Word Problems (MWPs).
Predominant among these are Chain-of-Thought
Prompting (CoT) (Wei et al., 2023) and Program
Aided Language Models (PaL) (Gao et al., 2023).
CoT employs an intuitive methodology, guiding AI
models through progressive problem-solving steps,
while PaL necessitates models to generate program
code for solution computation.

These two methods have been observed to sig-
nificantly increase the accuracy rates of responses
to questions in datasets used for measuring reason-
ing in LLMs. However, both approaches have spe-
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Question
Dan plants 3 rose bushes. Each rose bush
has 25 roses. Each rose has 8 thorns. How
many thorns are there total?
Answer
Dan plants 3 rose bushes. Each rose bush
has 25 roses. Each rose has 8 thorns. So
3 x 25 x 8 = 300. The answer is 300.

Figure 1: Examples of Errors Made by Large Lan-
guage Models in Arithmetic (Wei et al., 2023)

cific problems. In the CoT approach, LLMs are ex-
pected to perform arithmetic operations. However,
LLMs are not models highly-competent in perform-
ing arithmetic operations (Nogueira et al., 2021;
Lu et al., 2023; Frieder et al., 2023; Stolfo et al.,
2023; Meadows et al., 2023). The primary func-
tion of LLMs in solving MWPs should be to deter-
mine which operations to perform among numbers
based on the given scenario. As shown in Figure
1, models correctly define operations, but inaccura-
cies in performing operations have been observed,
leading to decreased accuracy rates. Therefore,
measurements made with these approaches only
partially reflect reality. The PaL method is not ef-
fected by errors that can occur due to arithmetic
operations, since a third party code interpreter runs
the calculations, however it is limited for models
that are proficient in using programming languages.
Therefore, PaL is limited in terms of the LLMs it can
be applied to.

New methods have emerged to address these
challenges, leveraging symbolic variables to del-
egate arithmetic computations to an external cal-
culator (He-Yueya et al., 2023). Additionally, these
methodologies does not require any programming
proficiency. One particular method, replaced vari-
ables in a question with “w,x,y,z” variables, and
then asked LLM to solve the question using self-
prompting strategies (Gaur and Saunshi, 2023).
We refer to this kinds of approaches in our paper
as "One-Character Substitution Method", as they
exchange numbers with one-character variables.

This strategy effectively tackles issues related to
arithmetic errors and programming expertise lim-
itations. In our study, we investigate the poten-
tial refinement of this technique by replacing these
generic placeholders with semantically rich coun-
terparts. Instead of employing generic symbols,
we advocate for descriptive variable names such
as "number-of-books-James-has" as exemplified in
Figure 2. We hypothesize that this modification will
aid LLMs in problem-solving tasks, as managing
numerous one-character variables, especially in
contexts involving multiple numerical values, poses
a significant challenge even for humans.

We introduce the Semantically Rich Variable Sub-
stitution Method (SemRiVas) as an improvement of
prior work that leverages symbolic variables to aid
LLMs in solving MWPs. Our research contributes
to the literature in the following ways:

1. Our approach eliminates the need for LLMs to
possess programming proficiency and perform
arithmetic operations, making it universally ap-
plicable as an evaluation method.

2. We commit to releasing all code and datasets
associated with our method, facilitating its
adoption for evaluating LLM performance on
MWPs.

3. Our method demonstrates superior accu-
racy compared to previously employed One-
Character Substitution Methods.

2. Background

2.1. Large Language Models
Large Language Models(LLMs) are advanced nat-
ural language processing systems that utilize differ-
ent machine learning techniques to comprehend
and generate text in human language. With the
development of Transformer architecture (Vaswani
et al., 2023), massive models with billions of param-
eters have been proposed. Some of the notable ex-
amples include ChatGPT (OpenAI, 2022) , Phi1.5
(Li et al., 2023), and Llama2-7B (Touvron et al.,
2023). These models demonstrated remarkable
performances in several natural language process-
ing tasks, including machine translation, common
sense reasoning, summarizing, planning, reason-
ing, and coding.

2.2. Math Word Problems
Math Word Problems (MWPs) are mathematical
problem-solving scenarios within a contextualized
linguistic framework. Solving these problems ne-
cessitates the translation of the verbal description
into mathematical expressions (Meadows and Fre-
itas, 2023), such as equations or inequalities, which
requires analytical thinking and reasoning skills.
Recent works have prevalently utilized math word
problems to evaluate LLM’s reasoning capabilities
(Li et al., 2023; Chowdhery et al., 2023).

2.3. Chain of Thought Prompting
Chain of Thought Prompting (CoT) (Wei et al., 2023)
is a strategy that aims to decompose a problem into
several intermediary operations to reduce the prob-
lem’s complexity, resulting in better performances.
Specifically, when employing CoT, we prompt the
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SemRiVas
Question
James has number-of-books-James-
has books. If he buys number-
of-books-James-buys books, how
many books he has?
Answer
James will have number-of-books-
James-has + number-of-books-
James-buys books.

One-Character Substitution
Question
James has w books. If he
buys 2x books, how many
books he has?
Answer
James will have w + 2x books.

Figure 2: Comparison of Methods

LLM with instructions such as "Let’s think step
by step," directing the LLM to follow a divide-and-
conquer approach. Researchers have shown that
this intuitive and easy-to-implement approach ex-
hibits remarkable accuracies when tested with math
word problems.

2.4. Program-Aided Language Models

When solving math word problems, LLMs have
been shown to encounter difficulties in performing
arithmetic. With Program-Aided Language Models
(PaL)(Gao et al., 2023), researchers aimed to uti-
lize LLMs’ coding abilities to address math word
problems indirectly. Instead of directly providing the
answer, the approach involves making the model
generate a Python code that would, in turn, pro-
duce the correct result. In this method, once the
Python code is generated, it is given to a third-party
Python interpreter to execute the operations. By
employing this strategy, they aimed to minimize the
errors stemming from LLMs’ inability to perform sim-
ple math. They demonstrated that PaL achieved
high accuracies in their tests with LLMs capable of
coding.

2.5. Solving Math Word Problem’s
Symbolically

Symbolic methods (Ferreira et al., 2022) represent
quantities and relationships using symbols or vari-
ables, allowing for systematic manipulation and
solution. Symbolic methods make sense because
they reduce the likelihood of arithmetic errors and
enable the application of mathematical reasoning
and algorithms to complex scenarios.

The most notable work concerning our domain
in this research has used (w, x, y, z) (Gaur and
Saunshi, 2023) variables to substitute numerical
values in the SVAMP (Patel et al., 2021) Dataset,
then tested LLM’s ability on this new augmented
dataset. We will cover more about that method in
the Baselines subsection.

3. Methods

In this study, we introduce SemRiVas: Semantically
Rich Variable Substitution method. The SemRiVas
method primarily aims to replace numbers in Math
Word Problems (MWPs) with self-explanatory vari-
ables. This substitution facilitates differentiation be-
tween variables, particularly in lengthy questions,
and delegates calculations to a third-party calcu-
lator to reduce arithmetic errors. We utilize the
few-shot prompting technique for consistent and
accurate responses.

3.1. Semantically Rich Symbolic
Variables

Using symbolic variables instead of numerical val-
ues can enhance model performance in solving
MWPs. Models often commit arithmetic errors
while maintaining correct reasoning, as illustrated
in Figure 1. Employing a simple third-party cal-
culator can rectify these errors efficiently. Hence,
substituting variables in questions and later solving
them appears logical to improve accuracy. Previ-
ous methods have utilized one-character variables
such as [w, x, y, z], [p, q, r, s], however, we posit
that one-character variables might confuse models,
especially when there are many of them (Gaur and
Saunshi, 2023).

Instead of replacing numbers with one-character
variables, we advocate substituting variables that
describe the number’s purpose. For instance, as
depicted in Figure 2, we replace numbers with vari-
ables like "number-of-books-James-has." We hy-
pothesize that in a question with multiple numbers,
it would be challenging to track one-character vari-
ables and recall each variable’s significance. Con-
versely, using self-explanatory variables could aid
model comprehension.

3.2. Few-Shot Prompting
Few-Shot Prompting is a strategy where question-
answer pairs are compiled in the desired format
of model responses. Subsequently, the model is
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prompted with these question-answer examples,
followed by the original query. This approach
guides the model to adhere to specified structural
properties and provides concrete examples. It is
particularly valuable for evaluation, facilitating the
generation of extractable and quantifiable exam-
ples.

We have opted for 8-shot prompting in all our
evaluations. These prompts were drawn from GSM-
8K (Cobbe et al., 2021) and customized for each
method addressed in this study. All prompts will
be made available as open-source resources to
facilitate the adoption of our method.

4. Results and Discussion

4.1. Baselines
In this study, we opted for the GSM8K bench-
mark (Cobbe et al., 2021) for evaluations, given
its widespread use in the literature. The GSM8K
dataset consists of high/middle-school level Math-
ematical Word Problems (MWP) of high quality.
Another reason for selecting GSM8K was to exam-
ine the impacts of variable-substitution methods
on both short and long-context questions. Previ-
ous studies utilized the SVAMP (Patel et al., 2021)
dataset, which is constrained to a maximum of 4
numbers, whereas GSM-8K encompasses num-
bers ranging up to 8.

We chose GPT-3.5, specifically "gpt-3.5-turbo,"
as our base LLM due to its strong coding skills,
enabling accurate PaL (Gao et al., 2023) calcu-
lation and prompt-following abilities for smoother
processes.

To evaluate our method against previous ap-
proaches, we assessed PaL, CoT, and a One-
Character Substitution Method similar to prior work
that utilized [w,x,y,z].

4.2. Evaluation Strategy
We evaluated all four methods on 200 randomly
selected QA pairs from GSM-8K. (Due to financial
constraints, only 200 were selected). The process
of number replacement to generate the dataset for
the SemRiVas method was initially assisted by an
LLM and later supervised by humans to address
any errors. We used a simple Python program to
generate the dataset for the One-Character Substi-
tution method, as it didn’t require specific variable
names for each number.

The models were prompted with similar prompts
differing only in response format, not in questions.

For the PaL method, we offloaded the generated
responses into a python interpreter for evaluation.
For the One-Character Substitution, and SemRiVas
method, we simply exchanged variables with the
original numbers, and evaluated from there using

a simple python calculator. CoT didn’t require any
additional steps to evaluate, we simply took the
final answer it wrote.

We maintained consistent hyperparameters for
all methods: temperature parameter at 0.7 and Top-
P parameter at 1. We observed in a smaller subset
of data that these parameter values have proven
to be highly robust compared to higher or lower
settings.

Table 1: Accuracy Rates of Each Method (8-Shot)
PaL CoT SemRiVas One-Character S.
48% 84% 44% 34.5%

4.3. Results

According to our research results (Table 1), the
GPT-3.5 model prompted with the SemRiVas
method achieved a 44% success rate across 200
questions. PaL achieved 48% accuracy, CoT
achieved 84%, and the One-Character Variable
Substitution method achieved 34.5%.

We have also analyzed the success rates of Sem-
RiVas and the One-Character variable method on
the 50 longest/shortest questions to see whether
our hypothesis that using semantically rich vari-
ables enhances performance in long-context set-
tings. We found that SemRiVas was 38% more
successful than the One-Character Variable Sub-
stitution method on the longest questions, while
it was marginally less successful (7%) than the
one-character variable substitution method on the
shortest questions.

4.4. Discussion

Our method, designed to measure LLMs’ logi-
cal and reasoning abilities, achieved higher accu-
racy than the one-character variable substitution
method, demonstrating the effectiveness of seman-
tically rich variables. This increase in accuracy
underscores the effectiveness of our approach for
solving MWPs symbolically using large language
models.

However, we can see that LLMs seem to be strug-
gling to solve MWPs using symbolic variables, as
both symbolic methods didn’t surpass the accuracy
rate of CoT or PaL.

That said, due to budget and manpower limita-
tions, our experiments were confined to the GPT-
3.5 model and a smaller subset of the GSM-8K
(Cobbe et al., 2021) benchmark. Further testing on
the entire GSM-8K dataset and with different mod-
els could provide a clearer picture of our approach’s
success rate.
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5. Conclusion

In conclusion, our research introduces the Semanti-
cally Rich Variable Substitution Method (SemRiVas)
as a novel approach to evaluate Large Language
Models (LLMs) on Mathematical Word Problems
(MWPs). By utilizing descriptive variable names
instead of generic symbols, SemRiVas aims to im-
prove LLMs’ problem-solving abilities, particularly
in long-context settings. Our experimental results
demonstrate the superior accuracy of SemRiVas
compared to previous symbolic methods, highlight-
ing its effectiveness in enhancing LLM reasoning
capabilities. However, our findings also suggest
that LLMs still face challenges when solving MWPs
using symbolic variables, as they did not surpass
the accuracy rates achieved by methods such as
CoT or PaL. Further research is needed to under-
stand and address these challenges comprehen-
sively.
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